TheFinancialEdge™

VBA and API Guide

100509

©2009 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any
form or by any means, electronic, or mechanical, including photocopying, recording, storage in an
information retrieval system, or otherwise, without the prior written permission of Blackbaud, Inc.

The information in this manual has been carefully checked and is believed to be accurate. Blackbaud, Inc.,
assumes no responsibility for any inaccuracies, errors, or omissions in this manual. In no event will
Blackbaud, Inc., be liable for direct, indirect, special, incidental, or consequential damages resulting from
any defect or omission in this manual, even if advised of the possibility of damages.

In the interest of continuing product development, Blackbaud, Inc., reserves the right to make improvements
in this manual and the products it describes at any time, without notice or obligation.

All Blackbaud product names appearing herein are trademarks or registered trademarks of Blackbaud, Inc.
All other products and company names mentioned herein are trademarks of their respective holder.

FE-VBAandAPIGuidefortheFinancialEdge-100509

VBA and API
Guide for the
Financial Edge

INTRODUCTION TOVBA ANDAPI 1
Overview of VBA and APl 3
Understanding Blackbaud Program Architecture 6
Using the Type Library 6
Understanding Objects, Object Models, and Collections 8
Working with Objects o 14
PROGRAMMING BASICS e 19
Managing Data ODJeCtSttt e 20
Managing Data ColleCtionsiiiiii e 34
Managing User Interface Objects i, 39
Managing Service ODJECtS vt 43
Managing TransactioNSttt 71
BLACKBAUD VBA ... 73
Working in the VBA Environment i 74
Managing Active ObJects ot 77
Managing VBA MaCK0Sottt e 89
BLACKBAUD APl 101
Working withthe APl 102
Managing the FE_API Object i e 105
Managing the FE_Services ObjJect, 107
Managing PIug-Ins 108
Managing APL Applicationst 114
SAMPLE PROGRAMS . . oottt et et e e 123
AP Samples 124
VBA Samples o 269
Read-Only Database Assistance Samples oo, 281

)
wd
C
()
wd
C
O
O

Introduction to
VBA and API

Contents
Overview of VBA and APL. 3
Comparing VBA and APL. 5
Understanding Blackbaud Program Architecture 6
Usingthe Type Library e 6
Understanding Objects, Object Models, and Collections................. 8
Understanding Object Models i 8
Understanding Data Objects. oo 8
Understanding Top-Level Objects 9
Understanding Child Objects i, 10
Understanding Object Collections i 11
Understanding Top-Level Collections 12
Understanding Child Collections i, 13
Understanding Child View Collections 13
Understanding Service Objects. i 14
Workingwith Objects 14
Using Early-Bound Objectst e 14
Initializing and Releasing Objects i 14
Initializing Objects iNn VBA 15
Initializing Objects in APl 15
Releasing Objectst 16
Using Foreign Keyst e 17

—
-
()
i
Q
©
i e
O

CHAPTER 1

Welcome to the Blackbaud VBA and API Guide for The Financial Edge. This guide provides an overview of the
optional modules VBA and API, and the various tools, objects, and methods developers can use to customize
Blackbaud software. Although this guide contains “introductory” information, it is not intended for use by novice
users, rather it is written to introduce experienced programmers to the unique Blackbaud programming
environment. Because of the complex nature of programming and the irreversible damage that can result, you
should not attempt to use this information unless you are comfortable with the Visual Basic programming
language, data types, variable scoping, and the Visual Basic editor.

To illustrate certain processes or procedures, each chapter of this guide contains code samples written in Visual
Basic 6.0. This language is shared by Visual Basic for Applications (VBA), Microsoft Visual Basic 6.0, Microsoft
Office 2000, and other VBA 6.0 host applications.While it is possible to use the API from other languages (C++ or
Java, for example), Blackbaud provides support for only Visual Basic programming. Blackbaud Customer Support
can help explain the intended functionality of procedures in this guide, however we will not modify, or assist you
in modifying, these examples to provide additional functionality.

All programming samples are for illustration only, and are provided without warranty, either expressed or
implied. This includes, but is not limited to, the implied warranties of merchantability and/or fitness for a
particular purpose. To learn more about the optional modules VBA and API, contact our Sales department at
sales@blackbaud.com.

The VBA and API help file provides additional resources that are not included in the print or PDF versions of this
guide because they are not suited to a print format. For example, the help file contains comprehensive lists of all
tables, views, and objects that appear in your Blackbaud program, and their objects, methods, primary keys, or field
types. To access the VBA and API help file from the program shell, on the menu bar, select Help, VBA/API Help.
You can also browse to the FESolutions.chm file in the program directory. From the VBA and API help file, you
can copy sample code and paste it into Notepad or directly into your VBA or Visual Basic 6.0 project.

Information in this guide is divided into five chapters:
Introduction. This chapter provides an overview of basic concepts, the type libraries, objects, and collections.

Programming Basics. This chapter discusses the basics of programming with VBA and AP, including
managing data objects, data object collections, user interface objects, service objects, interfaces, and
transactions. This chapter also contains simple examples of custom modifications you can make to the
software.

Blackbaud VBA. This chapter discusses using the optional module VBA to add customized functionality directly
in the program shell.

Blackbaud API. This chapter discusses using the optional module API to customize the program using
third-party or custom applications.

Sample Programs. This chapter contains sample applications and plug-ins, which are custom-built applet
extensions you can “plug in” to the program interface to create custom solutions ranging from simple HTML
documents to multi-level ActiveX documents or interactive spreadsheets.

INTRODUCTION TO VBA AND API

This guide uses text formatting to identify specific items or characteristics such as programs, modules, keyboard
actions, and code.

Format Denotes

'Bold Italics This is a Blackbaud program name, such as General Ledger.

Italics This is a Blackbaud module name, such as Configuration.

Bold This is the name of a field or button. For example, Delete refers to a button on the screen.

KEY This is a key on your keyboard. “Press DELETE” refers to the key on your keyboard. On the
other hand, “Click Delete” refers to an on-screen button.

KEY+KEY Two keys joined by a plus sign indicate you must press the keys simultaneously to execute

the command. For example, when instructed to “Press CONTROL + F”, you press the
CONTROL key, hold it, then press the F key.

KEY, KEY Two keys separated by a comma indicate you must press the keys in the order in which they
appear. For example, if you are instructed to “Press A, F”, you must press the A key, release
it, then press the F key.

Our code samples follow Visual Basic conventions and use green text offset by a single quotation mark to identify
programmer comments. To distinguish them from standard text, code samples always appear in this format:

"Programming Example-
"We put VB code comments in green

Dim oFund as CGLFund
Set oFund = New CGLFund

oFund. Init FE_API _SessionContext

Overview of VBA and API

With VBA and API, you can customize Blackbaud software to meet your organization’s unique needs. Whether you
want to build a quick VBA macro or a full-blown application based on our program’s object API, you can use these
tools to accomplish your task. VBA and API have different purposes and advantages when modifying our software:

Visual Basic for Applications. Visual Basic for Applications is the premiere development technology for
rapidly customizing and integrating packaged applications. VBA offers a sophisticated set of Microsoft Visual
Basic programming tools you can use to create custom solutions for your specific business needs.

With VBA, you can:

» Modify application behavior. You can modify the program to match your organization’s business rules and
processes.

» Automate repetitive tasks. You can combine sets of common manual tasks into a repeatable series of
actions.

» Extend application functionality. You can add features to the program that are not available out of the box.

* Integrate with other applications. You can adapt your Blackbaud program to work seamlessly with other
VBA-enabled software to integrate a line of business applications.

» Access data. You can exchange data with remote databases and applications and deliver results directly to
the desktop.

CHAPTER 1

For more information about VBA, see “Blackbaud VBA” on page 73.

< Microsoft Visual Basic - FE_User - [FE_User_Macros [Code]]

% File Edit “iew Inzet Format Debug Bun Tool: Addln: ‘Window Help -8 X
FE Code ‘Wizard _
Project - FE_User Ed I(General} j IDnBigInuuiceEmail j
B = 8] .
E ! Lll invoices over $1,000 will fire an e-mwail to the CFO j
E”§§F55¥ﬂﬁﬂl ! Add the following line to the APInvoice AfterSave Event:
=3 The Financial Edge Obj ' DoEigInvoiceEmail oRecord
----- FE_application
=5 Madules
-4y FE_System_Macros Public Sub DoBigInvoiceEmail (oRecord As Chject)
L% FE_System_Object
Eh&ﬁlT_User Dim oAPInvoice As CAPInvoice
=13 Modules
. w8 FE_User_Macras on Error GoTo ErrHandler
=9 References
b Sﬁ Reference to FE 5y Zet oldPInvoice = oRecord —

If olPInvoice.Fields (APINWOICES fld INVOICEAMOUNT) > 1000 Then
Dim oOutlook Az Outlook.Application
Set oOutlook = CreateChiject ("Outlook.Application™)

Dim oMailTtem Ls MailIltem
Set oMailltew = oCutlook.Createltem(clMailltcet)

oMailltem.To = "CFORYourQrganization.com"™
oMailltem.3ubject = "Large Inwvoice bLlert'™

Dim ocApVendor Ls ciPVendor

Set olApVendor = New cAPVendor

ohpWendor.Init goFE 3essioncontext

olpVendor.Load olPInvoice.Fields (APINVOICES fld APTWVENDORIID] ,

Dim sTewp As Itring -
< | o |E=Es | >|—|

Application Programming Interface. An Application Programming Interface (API) enables you to write
custom applications while taking advantage of the wealth of code contained within the Blackbaud program.
API follows the guidelines of Microsoft’s Component Object Model (COM), so you can use it from any
COM-enabled programming environment, including Microsoft Visual Basic, Microsoft Visual C++, and
Microsoft Visual Basic for Applications. Experienced programmers can use API to create applications that
work with the accounting package or access Blackbaud data from almost any application.

With API, you can:

» Create custom form letters within Microsoft Word that directly access the latest information from your
database.

» Generate up-to-the-minute comparative information from within Microsoft Excel.
 Build custom forms that aggregate the fields you use most often.

» Exchange information between your Blackbaud program and legacy systems in real time.
» Access current accounting data directly from your own Web pages.

INTRODUCTION TO VBA AND API

For more information about API, see “Blackbaud API” on page 101.

< Microsoft Yisual Basic - FE System - [FE_Application [Code]]

% File Edit “iew Inzert Format Debug Bun Toolr Addin: Window Help -8 X
FE Code'Wizard _
Project - FE System %] |{GEI'I'ET3|]' =] IdisplamnuuiceFurm =
E M Invoice A

Elﬁ FE System

¢ B3 The Financial Edge Obj
: FE_Application
=155 Modules

Elﬁ FE_User

rs

Public Function AddInvoice (BEyWal lInvoiceNumber A=z Long,
BvyWal dtInvoicelate Ls Date,
BEyWal slnvoiceDescription As

Optional ByVal sVendorMName LAs String)

slnvoicelescription =

! sWendorName = "ADS Security Systems"™
E1-E5 Modules ' lInvoiceNumkher = 9895 |
. v} FE_User_Macros ' dInvoiceimount = 100
B3 References ! deInvoicelate = Date
LwﬁiRﬁemnmtDFESv ' deInvoicelbuelate = Datelddd("M", 3, dtlnvoiceDate)
1

Fiecurity Camera™

BEyWVal dInvoice
BvyWal dtlInwvoice
String, Options
Az Lor

Dim lInwvoiceId As Long

'If 1VendorId iz wissing (lVendorId = 0], get the VendorId from its
'If VendorMName is missing, or the given VendorMame is not in the 13
'Teility function will return 0O

If 1lVendorId = 0 Then
1VendorId = goFE Service.iPVendorsGetID (sVendorMName, True)

If 1lWendorId = O Then
AddInvoice = -1
Exit Function
End If
End If
of
| | ol == '

Comparing VBA and API

If you are not familiar with both VBA and API, you may not be sure which module is best suited to the solution you
want to create. The most important distinction between VBA and API is that VBA is available only when your
Blackbaud software is actually up and running, so VBA applications also only work with the program open. With
API, you can write fully functional “standalone” programs that have complete access to Blackbaud data and
services, but that can run independently of our software. API is the appropriate solution if you want to write your
own “front-end” to the program or create a customized program that melds your accounting system with some
other specialized functionality.

Programming with API requires you to have your own COM-enabled programming language. None of the niceties
inherent to VBA are present in API. For example, VBA includes a complete forms design package, but API does not.
If you want to build a user interface using API, you must do so on your own.

If your goal is to create an entire application or utility, API provides you with the perfect blend of structure and
flexibility to accomplish this task. You can also use API to gain access from other VBA-enabled applications. For
example, you can build a custom Microsoft Excel VBA batch entry macro for adding multiple records to

The Financial Edge. For more information about VBA, see “Blackbaud VBA” on page 73. For more information
about API, see “Blackbaud API”” on page 101.

CHAPTER 1

Understanding Blackbaud Program
Architecture

The program structure of The Financial Edge is unique in that programs share a common shell, the same object
model, and many common objects, but the type library is split into separate object references.

To help distinguish which programs an object applies to, we added a prefix to the object name. For example, in
cGLAccount, “c” indicates that the object is a class, and “GL” indicates that the object represents a General
Ledger account. Common objects used in multiple programs usually contain only the “c” prefix. Examples of
common objects include cBank, used in several subledger programs, and the cQueryObject interface, used in all
Blackbaud accounting products.

For simplicity, most examples and code samples used in this guide are written for a particular Blackbaud program.
However, you can use many samples in other Blackbaud programs by changing the objects in the code sample. To
view code samples, see “Sample Programs” on page 123.

Using the Type Library

A type library is a language-independent file that provides type information about the components, interfaces,
methods, constants, enumerations, and properties exposed by the system. Your code runs faster through a type
library because objects are identified by specific type. This makes using the type libraries the easiest and most
efficient way to manipulate Blackbaud objects. Also, if you set a reference to a type library, all objects and their
properties and methods appear in the Object Browser. If you do not use a type library, Visual Basic must
communicate with components through the slower dispatch interface. Another major drawback to using the
dispatch interface method is that VBA does not provide compile-time syntax checking.

In Visual Basic 5.0 and later, you can also use Intellisense to speed data entry. Intellisense is a Visual Basic feature
that displays a list of an object’s properties and methods. You can then double-click the property or method and it
appears in your code for faster data entry without syntax errors. For example, in Visual Basic or VBA, if you enter
an object variable that is defined in a type library or Visual Basic component, then enter a period (.), the code editor
displays a list of the object’s properties and methods. When you double-click a property or method in the list, it
appears automatically in your code. Intellisense works only for early-bound objects. For more information about
binding objects, see “Using Early-Bound Objects” on page 14.

While this guide is written for programming with Visual Basic, you can use the Blackbaud type library in any
COM compatible language, for example Microsoft Visual C++.

INTRODUCTION TO VBA AND API

The following picture shows the Intellisense list of properties and methods available for a fund object:

-"5:.;— FE_User - FE_User_Macros [Code]

I(General}

j ITutoriaI

[

Public Sub Tutoriali()

Iim oFund ks cGLFund
et oFund = New oGLFund
oFund.Init FE Application.3essionContext

oFund.Load 2
oFund.
=B Cansdd
= CanBeDeleted
End
=@ CanlLoad
=B CloseDown
=3 [elate

=3 CanBeSaved —

|

o

If you have the optional module VBA, the program automatically sets a reference to the type library when you start

VBA. To manually set a reference to a library, select Tools, References.

If you have the optional module API, you must manually reference the type library from any Visual Basic project

that you want to gain early-bound access to Blackbaud objects.

> Setting a manual reference to a type library from an API application

1. From a new project in Visual Basic 5.0 or later, on the menu bar, select Project, References. The
References screen appears, displaying a list of preset type library references.

Available References:

[|Blackbaud FE7.0 Global Change Engine
[Blackbaud FEZ.0 Impart Engine

[JBlackbaud FE7.0 Interfaces

[JBlackbaud FEZ.0 Library code &

[JElackbaud FEZ.0 Library code B

["]Blackbaud FEZ.0 Library code for SE&R.
[lBlackbaud FE7.0 Lacked Record Yiewer Plugin
MIE|=ckbaud FE7 .0 Objects
[1Blackbaud FEZ.0 Open SQL Debugger
[[1Elackbaud FE7.0 Product Data Objects
[Blackbaud FE7.0 Products UI
[Blackbaud FE7.0 Query Engine
[1Elackbaud FE7.0 Queue DataDbjects

|_|IEIackhaud FE7.0 Cugue UL | _lﬂ
1 »

[

—

+|

Pricrity

3

References - Project]] I

Ok

Cancel

Browse, .,

Help

e

—Blackbaud FE7.0 Objects
Location:

Language: Standard

:\Program Files\Blackbaud| The Financial Edge! TypeLibibbafn

CHAPTER 1

2. Inthe list, mark Blackbaud FE7.0 Objects. The Blackbaud FE7.0 reference must be set for you to gain
early-bound access to Blackbaud objects.

3. To close the References screen and return to the project, click OK.

Understanding Objects, Object Models, and
Collections

Before you can begin programming, you must understand objects. Objects are the basic building blocks of any
application, including The Financial Edge. In fact, nearly everything you do in Visual Basic involves
manipulating objects. Once you understand how to work with objects, you can successfully customize our
software.

An object is code and data combined into a single unit that can be as simple as a single piece of an application or as
complex as an entire application. In Blackbaud software, every data element — each account, project, and

invoice — is an object you can manipulate programmatically in Visual Basic. Examples of content-type objects
containing data are invoices, accounts, account codes, vendors, and projects. Objects also include
functionality-based, or “service”, objects that manipulate content by opening, closing, adding, displaying, finding,
or deleting records. Service objects include queries, reports, and viewers.

For a complete list of programmable objects in The Financial Edge, see the Programmer Reference section of the
VBA and API help file. To access the VBA and API help file from the program shell, select Help, VBA/API Help.

Understanding Object Models

An object model is a single structure created from many objects. Further, groups of object models combine to
create applications such as The Financial Edge. An object model is similar to a family tree in that it contains
levels of parents and children. In an object model, the parents are known as top-level objects, and the children are
called child objects. As you progress from upper to lower levels of the object model, child objects can have their
own children, and the child objects “inherit” certain characteristics from their parents.

In a human family tree, individuals within the family structure are physical beings, but they are also associated
with what they do (doctor, student, mother, etc.). Similarly, Visual Basic objects can be content such as invoices,
accounts, account codes, vendors, projects, and they can represent functionality, reacting to various situations or
events. Examples of functionality-based objects include Init, CloseDown, Load, or Delete objects that perform
actions on records.

In Blackbaud programs, each major record type has its own object model. For example, a top-level object such as a
project has a model comprised of child objects such as contacts, attributes, and notepads. If you build object
models with the same layout as their Blackbaud counterparts, the task of programming such a large and
complicated relational database is greatly simplified. The Blackbaud object model has one major goal: to expose
all important functionality and data needed to manipulate the database records and services in a high-level manner.

Understanding Data Objects

The Blackbaud object model is primarily based around the data the program manages. Because the key to your
accounting system is its data, data objects are the key to programming The Financial Edge. Higher level data
objects are called “top-level” objects, and lower level data objects are considered “child” objects. To illustrate this
relationship, in General Ledger, project records can contain contacts that track biographical information about
individuals related to the project. A project can have any number of contacts on its record. In relational database
terms, there is said to be a “one-to-many” relationship between a project and its contacts. For this reason, in

The Financial Edge object model, the contacts object is a child of the CGLProject data object, which is the object
in the system that represents projects.

INTRODUCTION TO VBA AND API

In the following diagram, we see that for each CGLProject there is a child object named Contacts, and the Contacts
object has child object named CGLProjectContact. The Contacts object name is plural for a very important reason
— itis a collection object used to iterate through any number of children.

CGL Project

-

Contacts

|CG LProj;;tContactl

You can navigate all collection objects in the object model using the “For Each” syntax, which is the standard for
navigating in VBA collections. The following code sample illustrates navigating a project object using the “For
Each” syntax:

“Note: The code to initialize and load a CGLProject(oProject)
" object omitted for brevity
Dim oProjectContact as CGLProjectContact

"Print all of this project®s contact names to the
" VBA debug window
For Each oProjectContact in oProject.Contacts
Debug.Print oProjectContact.Fields(GL7PROJECTCONTACTS_fld_NAMEID)
Next oProjectContact

Every data object in the program is modeled in the same manner. After you become familiar with the “blueprint”
for the Blackbaud object model, you can program any data object in the program.

Understanding Top-Level Objects

A top-level object gets its name because it is at the top of the object model hierarchy. A method is the programming
equivalent of a verb — it performs an action or service for objects in the program. The methods of a top object
provide access to other objects and collections. All top-level objects have the same methods.

10

CHAPTER 1

Top-Level Object Methods and Properties:

Method Description

Init Must be called before using the object; must pass in an IBBSessionContext

Load Pass in the ID of the object to load it from the database

Fields Allows you to change the value of any of the fields for the object

Save Saves any changes you made to the objects fields or other objects in its hierarchy to the database
CloseDown Must be called when you are through with the object

Delete Deletes the object and any related records from the database

Understanding Child Objects

Child objects are lower-level objects within the object model hierarchy. Attributes, notes, and the history of
changes are common examples of child objects. A child object cannot exist without a top-level object. For
example, to add a contact to a project in General Ledger, you must first load the project. To add contacts
programmatically, you must also first load and initialize the parent record. You cannot create, load, save, initialize,
or delete child objects. All these actions are accomplished via methods exposed by the child object’s parent. Child
objects contain no common methods, but they share a common property, the Fields property.

Child Object Properties:

Property Description
Fields Enables you to change the value of any of the object’s fields

A General Ledger project form includes several parent-child relationships, such as that of the project and its
contacts. A project’s contacts are children of the record and are available only through the project’s CGLProject

object.

11
INTRODUCTION TO VBA AND API O—J

The following picture shows contact child objects appearing on a project record:

T 1003 - Everett Grant

o &
mPoges o

"i Mew Contact @& Open Delete

Contact Mame | Pazition rganization Addreszs City

Mr. Tom Everett Owner Everett Enterprizesz 154 Oakdale Drive Chicago
Mz Sue Ewerstt Ewerett Enterprizes 154 Oakdale Drive Chicago

Understanding Object Collections

A collection is a parent object containing other objects that are related to each other. Using collections provides a
simple way to group objects into a single unit you can refer to collectively rather than by identifying each piece.
You create collections the same way you create other objects. For example, to create an account collection, use this
format:

Dim oAccounts As CGLAccounts
Set oAccounts = New CGLAccounts

12

CHAPTER 1

Understanding Top-Level Collections

The top-level collection is a collection of top-level objects. These objects are useful if you want to process all the
instances of a given object in the program. Top view collections have no add or remove methods because you add
and remove top-level data collections through methods on the top-level objects themselves. A powerful feature of
top view collections is that you can apply a filter to a collection when it is initialized so that only a specific subset
of objects is included. For example, you may want to only include active accounts when using the CGLAccounts
collection. In this case, you pass the correct filter constant (tvf_Account_CustomWhereClause) and enter the
custom filter criteria as a string. When the collection is initialized, it includes only accounts marked as active. This
additional parameter is optional. You should reference the database tables in the VBA and API help file to find the
correct “where clause”.

@ In collections, the object name becomes plural.

Top-Level Collection Methods:

Method Description

CloseDown Must be called when you are through with the object

Count Provides a count of the number of objects in the collection

Init Must be called before using the object. Must pass in an IBBSessionContext
Item Returns a top object for a given index

This code sample illustrates filtering the CGLAccounts collection for active accounts.

"Define a variable to navigate the top view collection

Dim oAllAccounts as CGLAccounts
Dim oAccount as CGLAccount

Set oAllAccounts = new CGLAccounts

OAllAccounts. Init FE_Application.SessionContext, _
"Status = 1", , tvf_Account_CustomWhereClause

For Each oAccount in oAllAccounts
Debug-Print oAccount.Fields(GLACCOUNTS_fId_DESCRIPTION)

oAccount.CloseDown

Next oAccount

Each top-level object has a corresponding top view collection. Remember, a distinguishing characteristic of a
collection is that the object’s name takes the plural form. For example, the top view collection object for
CGLAccount is CGLAccounts.

13

INTRODUCTION TO VBA AND API

The following example illustrates filtering undeleted invoices and printing a list by the invoice description:

Dim olnvoice As CAPInvoice
Dim olnvoices As CAPInvoices

Set olnvoices = New CAPInvoices

olnvoices.Init FE_Application.SessionContext, tvf Invoice UseFilterObject
olnvoices.FilterObject.ExcludeDeleted = True

For Each olnvoice In olnvoices
Debug.-Print olnvoice.Fields(APINVOICES_ fld_DESCRIPTION)
olnvoice.CloseDown
* close down top object

Next

Set olnvoice = Nothing

olnvoices.CloseDown
Set olnvoices = Nothing

Understanding Child Collections

A child collection is a collection of child objects. A child collection cannot exist without a top object. You can add
to or remove objects from the collection, but you cannot save a child object without calling the parent’s Save
method. This is because the parent may have to enforce rules about membership in its collection. When you save
the parent, all the child objects in the collection are saved if they are dirty (they have been edited) or are new, and
all objects that have been removed are deleted from the database. You cannot create, load, save, close down,
initialize, or delete a child collection.

Child Collection Methods:

Method Description

Item Returns a child object, given an index.

Add Creates a new child object, stores its membership in the collection, and returns a reference to
It.

Remove Removes a child object from the collection. Once a child object is removed from a
collection, it cannot be used again.

Count Provides a count of the number of child objects in the collection.

Understanding Child View Collections

With a child view collection, you can navigate through a subset of a particular true Child collection. You cannot
add to or remove from these collections because they are just views of another collection and other factors
determine their membership. Child view collections have two methods.

14

CHAPTER 1

Child View Collection Methods:

Method Description
Item Returns a child object given an index.
Count Provides a count of the number of child objects in the collection.

Understanding Service Objects

While data objects enable you to manipulate data within your program, and user interface objects give you a
workable form for interacting with the user, other objects give you access to discrete functionality within the
application. These objects are not easily categorized because they each provide a service via their own unique
programming interfaces. To help organize these entities, Blackbaud’s object model refers to them as Service
Obijects. Service objects include, but are not limited to, queries, reports, viewers, search screens, and some forms. It
is likely you will call upon service objects quite frequently as you tackle various development tasks with the
program. For example, with the Query service object, you can access the result set of pre-existing queries to
improve or expand the program’s reporting and data analysis capabilities. Another advantage of service objects is
that they enable you to quickly assemble solutions that leverage existing Blackbaud functionality, while at the
same time presenting users with a familiar interface.

For more information about service objects, see “Programming Basics” on page 19.

Working with Objects

Working with objects is the basis for programming. In both VBA and API, you should perform certain operations or
follow specific procedures when working with objects, including using early-bound objects from the type libraries,
and initializing and releasing objects. Failure to follow these processes can lead to syntax problems and run-time
errors.

Using Early-Bound Objects

The Blackbaud type libraries provides the declarations required by Visual Basic and VBA for every documented
program object, method, and constant. We strongly recommend you use early-bound, strictly-typed variables from
the type libraries.

The following code sample illustrates the advantage of using early-bound objects:

"This variable is late-bound. While it will still work,
" it will incur significant run time overhead, and will not yield Intellisense.

Dim oFund As Object
Set oFund = New CGLFund

"This early-bound variable provides optimal speed and
" access to the VB/VBA intellisense feature.

Dim oFundtEarly As CGLFund
Set oFundkEarly = New CGLFund

Initializing and Releasing Objects

Whenever you use an object exposed by the object model, it must first be initialized. In Blackbaud software, the
key to programming is the SessionContext object parameter. This object holds information about the state of the
active instance of the application.

15

INTRODUCTION TO VBA AND API

When you create new instances of objects and initialize them with a SessionContext, the object queries the
SessionContext for information it needs to operate (for example, a handle to the low-level database connection
interface).

To properly initialize an object, you must pass a reference to the SessionContext. Almost every top-level object in
The Financial Edge is initialized using the same method. You initialize (.Init) with a SessionContext, then release
(.CloseDown) the object when you are done. If you attempt to use an object without properly initializing it, a
trappable run-time error occurs. The SessionContext is obtained in slightly different ways, depending on whether
you are using the VBA or API development platform.

Initializing Objects in VBA

In VBA, the SessionContext is exposed via the FE_Application object. The FE_Application object is a global
object available to VBA. The most important property on the FE_Application object is the SessionContext. The
following code sample illustrates initializing a CGLAccount object in VBA:

Dim oAccount as CGLAccount
Set oAccount = New CGLAccount

"Use the FE Application object to get a reference to the
"SessionContext
oAccount. Init FE_Application.SessionContext

"Load Account with Database ID of 1.
oAccount.Load 1

"Release reference to GLAccount Object
oAccount.CloseDown

Initializing Objects in API
In API, you also must initialize objects before using them. It is important to understand that while a few differences
exist, once you understand object programming, the same rules apply to both VBA and the API.

An API application obtains its reference to the SessionContext via the FEAPI object. Unlike the FE_Application
object, which is automatically initialized and available to VBA in the running instance of your Blackbaud
application, you must manually initialize API using the object’s Init method. With the Init method, you can then
log into the program.

The following table lists parts of the FE_API.Init method and their descriptions.

Part Description

sSerialNumber f%equired. You don’t have to enter a serial number, but the parameter is required. Use double
quotes " "

sUserName Optional. A string expression containing a valid user name for the database to which you are

attempting to connect. This appears on the login form. If the user name and password fields
are left blank, the login form appears when the Init method runs.

sPwd Optional. A string expression containing a valid password for the user name specified above.
If both user name and password are supplied, the login form is not displayed.
DatabaseNumber Optional. A long expression representing the position of the desired database within the

login list. Note the standard sample database is always represented by 50. The first live
database is usually represented by 1. If the optional parameter is not defined, the database
form appears to the user, enabling them to select the desired database.

sThirdParty\Vendor Optional. Reserved for third party vendors.

IAppMode Optional. A long expression indicating whether this application is operating standalone or as
a server. If omitted, FE assumes this is a standalone application.

16

CHAPTER 1

The following code sample illustrates initializing a CGLAccount object in API:

Dim oAPl as FE_API

“"Initialize the APl and log in
Set 0API = New FE_API

"Log in as user Bob with password "Admin'*
OAPI_Init ", "Bob"™, "Admin"

Dim oAccount as CGLAccount
Set oAccount = New CGLAccount

"Use the API object to get a reference to the SessionContext
oAccount. Init oAPI._SessionContext

"Load GLAccount 1
oAccount.Load 1

"Release reference to GLAccount Object
oAccount.CloseDown
Set oAccount = nothing

The first three lines of this code remain constant for any API application and are usually placed in a section of your
API applications that is executed only once, for example, in your main form’s Load event.

The following code sample illustrates creating an FE_API object reference from Visual Basic:

“"Create a new FE_API object and set a modular reference to it
Dim moFE_APl as FE_API
Set moFE_API = New FE_API

The following code illustrates connecting to the sample database as “Supervisor” using the default password
“Admin”:

“"Initialize the FE_API object and attempt to connect to the FE_7 sample database
IT¥ Not moFE_API.Init("", "Supervisor'™, "Admin', 50) Then

MsgBox '‘Cannot connect to database', vbOKOnly Or vblnformation

Exit Sub
End IFf

Releasing Objects

Closing down objects can be a little trickier than initializing them. If you fail to properly close down an object,
potentially all of the object’s resources will remain “alive” and in memory. To many developers, this is known as a
“memory leak”. The objects attempt to detect this situation and raise errors in many situations if a CloseDown call
is not made. In some cases this type of leak cannot be detected immediately, leading to some hard-to-track bugs.
Remember, if it has an Init method, it probably has a CloseDown method also, and you should always make sure
you call them both.

17

INTRODUCTION TO VBA AND API

The VBA code sample is representative of almost every sample of programming code you see in our accounting
products:

Dim oAccount as CGLAccount
Set oAccount = New CGLAccount

“"Initialize the oAccount via the Init method
oAccount. Init FE_Application.SessionContext

“"Load Account with Database ID of 1
oAccount.Load 1

“"Properly release reference to Account Object using the
“CloseDown method
oAccount.CloseDown

Using Foreign Keys

Foreign keys are the links between two related tables. The foreign key in a “foreign” table contains a value
corresponding to the primary key of a “primary” table, ensuring that the information you add in the foreign table
meets the same requirements as the corresponding data in the primary table. A relationship between primary keys
and foreign keys takes one of two main forms — one-to-many or one-to-one. A good example of a one-to-many
relationship is the parent/child relationship of data objects. A parent object may have many child objects, and each
child contains a foreign key to its parent’s table. For example, the Project Contacts table has a field named
GL7ProjectsID that relates the contact to its parent project. In order to maintain integrity in the database, the
GL7ProjectsID is set by the Contacts collection on save, and it cannot be reset. This is a one-to-many relationship,
because each project can contain many contacts. You can also see this relationship through the object model:

Dim oContact As CGLProjectContact
oContact.Fields(GLPROJECTCONTACTS_fld_GL7PROJECTSID)

An example of a one-to-one relationship is the Name table. Each project contact can possess only one name. Note
there is no Name collection on the oContact object. Instead, there is just a single Name object. You can see the
one-to-one relationship in the object model:

oContact.NameObject.Fields(NAME_fId_FULLNAME)

The Name table does not have a foreign key to the Project Contacts table, but rather the Project Contacts table has
a foreign key to the Names table.

oContact.Fields(GLPROJECTCONTACTS_Fld_NAMEID)

In most cases, when you access a foreign key, the program returns the automatically generated ID number that was
created on the primary object. In some cases, however, the program returns a string — usually the description of
the object. For example, if you access an account field, most Blackbaud objects expose the user-defined 1D, such as
01-1000-00, rather than the database ID. This treatment of primary keys holds true for account and project names,
and in some cases, user names. For example, if you create an action and assign it to a user, the program uses the
name string instead of the user ID. You can use the IBBMetaField_FormatDescriptor to verify the format to use.
For more information about the IBBMetaField interface, see the “Object Reference” section of the VBA and API
help file.

18

CHAPTER 1

The following code sample illustrates foreign keys accessed by both a user name and user ID:

Dim oVendor As cAPVendor
Dim oAction As CAPVendorAction
Dim oMeta As IBBMetaField

Set oVendor = New cAPVendor
oVendor. Init moSC
oVendor.Load 1

Set oAction = oVendor.Actions.Add

"Here are two examples of a foreign key to the Users table. One is set by the
“user’s name, and the other is set by the user®s ID number.

"This is an example of a field that is a User Name. It returns the Name

"rather than the ID.

IT oAction.Fields(ACTIONS_fld _ASSIGNEDTOID) = "Supervisor™ Then
Debug.-Print "this is Supervisor”

End If

“"However, the Added by field returns the UserslID value.

IT oAction.Fields(ACTIONS_fld_ADDEDBYID) = 1 Then
Debug.Print "this is also the Supervisor”

End If

If you are unsure whether to use the ID or the user name, you can check the FormatDescriptor on the MetaField:

Set oMeta = oAction

IT oMeta.FormatDescriptor(ACTIONS_fld_ASSIGNEDTOID) = fmtUSER_NAME Then
Debug.Print "This is a User Name field"

End If

IT oMeta.FormatDescriptor(ACTIONS_fld_ADDEDBYID) = fmtNUMBER Then
Debug.-Print "This is a User ID field"
End If

*fmtACCOUNT_ID, fmtPROJECT ID and fmtUSER NAME all return and are set by the
"User defined ID field, rather than the database internal ID field.

Set oMeta = Nothing
Set oAction = Nothing

oVendor .CloseDown
Set oVendor = Nothing

Programming
Basics

Contents
Managing Data Objects i 20
Managing Top-Level Objects.t 20
Financial Edge Top-Level Objects i, 20
Loading Top-Level DataObjects, 23
Adding Records Using Data Objectst 26
Deleting Records Using Data Objects, 26
Managing Child Objects. i e 27
Addinga ChildObject i 27
Deletinga Child Object i e, 28
Updating Data Objectsot e e e 29
Validating Data Objects e e 30
Handling Data ObjeCt Errorst 30
Managing Data Collections, 34
Managing Top-Level Collections. i, 34
Managing Child Collections. i i i 34
Accessing Specific ChildElements 35
Iterating through Child Object Collections 35
Updating Child Collection Elements 36
Managing Child View Collections 37
Sorting Collections o 37
Filtering Collections o 38
Managing User Interface Objects. 39
Visual Basic Interfaces 40
Using the IBBDataObject Interface 40
Using the IBBMetaField Interface it 41
Managing Service Objects it 43
Managing Query Objectst 43
Managing Report Objects. i 47
Using the Code Tables Server. e e 53
Using the Table Lookup Handler 54
Using the Attribute Type Server. i 57
Using AnNnotation FOrMS.t e e e 60
Using Notepad FOrmMS. o e e 61
Using Media FOrmS o e e e e 64
Using Property VIBWerSo e 66
UsiNg Search SCreenSot e e 68

Managing Transactionst 71

N
D
)
Q.
®©
e
O

20

CHAPTER 2

This chapter introduces the basics of programming with VBA and API and provides details of working with objects
and object collections.

Managing Data Objects

Data objects are an integral part of programming in Blackbaud products. To build successful applications using
VBA or API, you must understand the basics of programming with data objects, including managing top-level and
child objects and collections, loading, updating, and validating objects, and how to handle errors. For an overview
of objects, collections, and the object model, see “Understanding Objects, Object Models, and Collections” on
page 8.

Managing Top-Level Objects

To manipulate a data record in your accounting system, you must initialize and load the appropriate data object.
The object model provides a data object for every editable record in your system, but only a select few data objects
can be instantiated and loaded. Most data objects are “children” of another object in the hierarchy. For example,
your database may have a project that contains a contact. The contact is of no use unless you know which project
the contact is associated with. For this reason, a contact can not be accessed directly, but must be accessed through
its top-level object — the project record. The contact object is accessed as a “child” of the project object.

Understanding the parent-child data object relationship is a key concept to grasp as you move forward with data
object programming. Throughout this guide, you will see objects that are at the top of the object hierarchy referred
to as “top-level objects”, and any objects that are accessible only via a top-level object are referred to as “child”
objects. For an introduction to top-level and child objects, see “Understanding Top-Level Objects” on page 9 and
“Understanding Child Objects” on page 10.

To view top-level objects for The Financial Edge programs, see “Financial Edge Top-Level Objects” on page 20.
Financial Edge Top-Level Objects

All Financial Edge programs, including General Ledger, Accounts Payable, Accounts Receivable, Cash
Receipts, and Fixed Assets, contain top-level objects.

General Ledger Top-Level Data Objects

General Ledger Top-Level Data Objects Available with Optional Module
CGlAccount N/A

CGLAccountCode N/A

CGLAllocationSet Allocation Management
CGLBatch N/A
CGLBudgetDistribution Budget Management
CGLBudgetScenario Budget Management
CGLChartTemplate N/A

CGLConsimport Consolidation Management
CGLConsMap Consolidation Management
CGLCurrencyExchange Consolidation Management

PROGRAMMING BASICS

21

General Ledger Top-Level Data Objects

Available with Optional Module

[CGLDefTranDist N/A

CGLFeeSchedule Allocation Management
CGLFiscalYear N/A

CGLFund N/A

CGLPool Allocation Management
CGLProject Projects and Grants
CGLProjectAction Projects and Grants
CGLRate Allocation Management

CGLRecurringBatch

N/A

CGLRevaluationSet

Consolidation Management

CGLSegments Budget Management
CGLSummary N/A
CGLTransaction N/A
CGLTransactionCodes N/A

Accounts Payable Top-Level Data Objects

Accounts Payable Top-Level Data Objects

Available with Optional Module

[CAPCheck N/A
CAPCreditMemo N/A
CAPBillltemHeader N/A
CAPInvoice N/A
CAPMiscLineltem N/A
CAPOrgAddress N/A
CAPPostInfo N/A
CAPPostingInformation N/A

CAPPurchaseOrder Purchase Orders
CAPReceipt Purchase Orders
CAPRecurringlnvoice N/A
CAPSalesTaxItem N/A
CAPTerm N/A
CAPVendor N/A
CAPVendorAction N/A

Accounts Receivable Top-Level Data Objects

Accounts Receivable Top-Level Data Objects

Available with Optional Module

[CARCharge N/A
CARClient N/A
CARClientAction N/A
CARCredit N/A
CARInvoice N/A
CARLineltem N/A
CARRecurringlnvoice N/A
CARRefund N/A

22

CHAPTER 2

Accounts Receivable Top-Level Data Objects

Available with Optional Module

CARReturn

N/A

CARReturnLineltem

N/A

CARTerm

N/A

Fixed Assets Top-Level Data Objects

Fixed Assets Top-Level Data Objects

Available with Optional Module

[CFAAsset

N/A

CFAAssetAction N/A
CFAAssetClass N/A
CFAAssetInventory N/A
CFACustomDepSchedule N/A
CFADepreciationYear N/A
CFAPostinfo N/A
CFATransaction N/A

23

PROGRAMMING BASICS

Common Top-Level Data Objects

Common top-level data objects are shared by multiple applications. The Report object, for example, is available in
all Blackbaud programs.

These top-level data objects are available in more than one Blackbaud program:

Common Top-Level Data Objects/ID Available with Optional Module
CAccrueAttendance N/A
CAdjustment N/A
CAttributeTypes N/A
CBank N/A
CBillingltem N/A
CBRTransaction N/A
CCodeTable N/A
CCountry N/A
CDefaultAcctsGroup N/A
CDeposit N/A
CExport N/A
ClnterfundSet N/A
CPaymentHeader N/A
CPaymentRun N/A
CPostparameter N/A
CProduct Purchase Orders
CQueryObject N/A
CRequisition N/A
CSalutation N/A
CSalutationField N/A
CSignature N/A
CSysBusRuleDetail N/A
CTableEntry N/A

Loading Top-Level Data Objects

To use objects in code, you have to “load” them. Each data object supports various methods for loading. In Visual
Basic, you can load objects by using the database ID (a primary key) and the Load method, you can load objects
using search screen, or for some Blackbaud accounting programs, you can select objects in Intellisense to speed
code entry and eliminate syntax errors.

Loading Data Objects by Database ID

Each record in your accounting system is stored in the database. To define database relationships and integrity, the
records are assigned unique values by the Database Management System. These values are called “primary keys”.
You can load each top-level data object using this key value with the “Load” method. The load method accepts just
one argument, a long integer representing the primary key of the record that you want to load.

24

CHAPTER 2

The following code sample shows the various ways to load an account data object for account number “01-1100".
The database 1D (primary key) for this account number is 1.

Dim oAccount as CGLAccount
Set oAccount = New CGLAccount

oAccount. Init FE_Application.SessionContext

“Load the record via the account number
oAccount.LoadByField uf_Account_AccountNumber, *'01-1100"
“Load the record via the Database ID

OAccount.Load 1

Loading Data Objects Using the Search Screen

If you are building a custom search screen, loading objects by database ID is an acceptable solution. However, if
you require a more robust search, or to concentrate on your application and use as many pre-built components as
possible, you may want to load objects using The Financial Edge search screen.

The search screen is programmable and easily modified in Visual Basic code. In fact, the search screen is a “service
object”, which means it is an object that provides easy access to Blackbaud’s functionality. For more information
about service objects, see “Managing Service Objects” on page 43.

The following code sample shows how to load an account record using the search screen.

Dim oAccount as CGLAccount
Set oAccount = New CGLAccount

"Access the SearchScreen service object

Dim oServices as FE_Services

Set oServices = New FE_Services
oServices.Init FE_Application.SessionContext

"Declare variable used to access the Search Screen
Dim oSearch As IBBSearchScreen

"The services object exposes most common, useful interface
“dialogs

Set oSearch = moServices.CreateServiceObject(bbsoSearchScreen)
oSearch.Init FE_Application.SessionContext

""Tell"™ the search dialog to allow for an account search
oSearch._AddSearchType SEARCH_GLACCOUNT

"Show The Search form
oSearch.ShowSearchForm

"If the user didn"t cancel, assign the
"record they selected to our data object

IT Not oSearch.SelectedDataObject Is Nothing Then
Set oAccount = oSearch.SelectedDataObject
End IFf

25

PROGRAMMING BASICS

Using this code sample, the Open screen, or “search” screen appears. If the user selects a record, the search service
constructs the appropriate data object, which is accessed from code via the “SelectedDataObject” property.

Open
Find: | coount | Search using queny: |<Defaults gl

Optiong

Account Account descripkion Account category Active/Tnackive Contra &

01-1030-00 Payroll Account Asset Active Mo

01-1040-00 Student Billing/AR Cash Asset Active Mo
01-1050-00 Petty Cash Accet Active Mo
01-1193-00 Accounts Receivable Asset Active Mo
01-1200-00 Tuition Receivable-De.., Asset Active Mo -
A 3
olints that meet thesze criteria: . Exact match only
Account: I‘“‘-""M-M ‘Whorking Capital: I j
Deszcription: I j Cazh Flow: I j
Status I.i‘n.c:tive j Clags: I j
Categony: I j Lazt modified by: I j
Contra; I j Lazt modified on: Ian_.,. tirme: j
Cantral: I j
Hide Filters | Clear Filter$| Previous Filtersl Filters are applied Firnd Mowe | Open I Cancel |

Loading Data Objects using Intellisense

In some Blackbaud accounting programs, you can load top-level objects using any of their unique fields. For
example, in General Ledger, you cannot save two accounts with the same account number or two projects with the
same project ID. Given this limitation, you can load each data object with the underlying record’s unique fields by
using the LoadByField method. The LoadByField accepts two arguments. The first argument denotes the unique
field you are using, and the second provides the key you want to find. In Visual Basic, when you fill in the first
argument for the LoadByField, Intellisense displays the object’s corresponding LoadByField fields.

This picture shows the Intellisense list of constants for the LoadByField method.

#% FE_User - FE_User_Macros [Code]

I[General} j ITuturiaI j

Pubhlic Sub Tutorialil)

Dim olccount As CGlAccount
et olAccount = New CGlAccount

olbccount. Init FE Application.3essionContext
'Load the record_via the account number
olhocount . LoadByField d
EGIENIETSESE f Account_Accounthumber
End Zub & uf_Account_lmporiD

26

CHAPTER 2

e Intellisense speeds data entry and eliminates syntax errors by providing a list of methods and properties. For
X4 more information about Intellisense, see “Using the Type Library” on page 6.

Adding Records Using Data Objects

Normally if an end user wants to add a project through General Ledger, he or she opens the Records page and
clicks New Project to access the New Project screen. With VBA, you can also enter new records using code.
Because Financial Edge records are top-level objects, they can all be entered via code, provided you define all
required fields for that record type. If a required field is not defined and an error trap is not set, the application
aborts when the save method is called. For more information about handling errors, see “Handling Data Object
Errors” on page 30.

All top-level objects are added the same way, but because you can access child objects only via a parent object,
child objects require different procedures. For more information about adding child objects, see “Adding a Child
Object” on page 27.

» Adding a record using a data object

1. To determine required fields for a specific record type, in The Financial Edge, open a new record of that
type. If you have not altered the program’s default color options, required fields appear in cyan. To set
color options, from the menu bar, select Tools, Options, then select the Color tab.

The following code sample illustrates entering new project records using code. You can add any record
type using the following sample. Simply change the object and define all required fields.

“"Create a new instance of the CGLProject object
Dim oProject As CGLProject
Set oProject = New CGLProject

“"Initialize the object by passing in a valid SessionContext
oProject. Init FE_Application.SessionContext

"Set any values and save
oProject.Fields(GLPROJECTS_fld_PROJECTID) = "2000"
oProject.Fields(GLPROJECTS_ fld_DESCRIPTION) = "New Project'
oProject.Fields(GLPROJECTS_ fld_TYPE) = "Grant™
oProject.Fields(GLPROJECTS_fld_STATUS) = *Open™
oProject.Save

“Always clean up. Objects with an Init() method typically
“have a CloseDown() method.

oProject.CloseDown

set oProject = Nothing

2. If required fields contain a default field entry, you do not have to define the field. For example, if you have
set the Automatically generate project 1Ds business rule, an 1D appears automatically if you do not
provide one.

Deleting Records Using Data Objects

Deleting a record is very similar to loading a data object, but it requires an additional line of code to instantiate the
delete method.

27

PROGRAMMING BASICS

The following code sample illustrates deleting a data object.

Dim oAcct as CGLAccount
Set oAcct = New CGLAccount

oAcct. Init FE_Application.SessionContext

“Load the first record

“"Note: we left out some error trapping here (for example if this
"record didn"t exist) to keep the sample clear

OAcct.Load 1

"Delete the Record using the Data Object"s Delete method
OAcct._Delete

oAcct.CloseDown
Set oAcct = Nothing

Managing Child Objects

You can access a child object only via its parent object. In code, child objects require different procedures than
top-level objects and are referred to through a left-to-right sequence that progresses from parents to child objects.
For example, in the sample below, the top-level object oAccount is listed first, followed by the child object
Notepads, followed by the notepad property IsMember, followed by the type True:

oAccount.Notepads. IsMember = True

For an overview of child objects, see “Understanding Child Objects” on page 10.

Adding a Child Object

To create a new child object, you must first create a top-level object with a child collection to contain the child
object. Every child object must have a parent object and must be contained within a child collection. It is important
to remember that no changes are made to the database until you call the parent record’s Save method. Next, use the
collection’s Add method to return a new child object. At this point, the object is a member of the collection, but it
is not added to the database until you call the Save method.

28

CHAPTER 2

The following code sample illustrates adding a notepad to a General Ledger project:

Dim oProject As CGLProject
Dim oNotepad As IBBNotepad
"Example of Interface, this is not an object

"Create and load top object

Set oProject = New CGLProject

oProject. . Init FE_Application.SessionContext
oProject.Load 9

"Create the notepad object.
Set oNotepad = oProject.Notepads.Add

oNotepad.Fields(NOTEPAD_fld_NotepadType) = *Internal*

“Notepad Type is the only required field.
oNotepad.Fields(NOTEPAD_fld_Author) = *George™
oNotepad.Fields(NOTEPAD_fld_Title) = "Example™
oNotepad.Fields(NOTEPAD_fld_Description) = "Example of child object™
oNotepad.Fields(NOTEPAD_fld_NotepadDate) = "05/15/2005"

“Child object is saved with top object.
oProject.Save

“Clean up child object, child is closed with top object.
Set oNotepad = Nothing

“Clean up top object.
oProject.CloseDown
Set oProject = Nothing

@ The collection’s Add method is the only way to create a new child object. All child objects are added using
the same process.

Deleting a Child Object

Deleting a child object is very similar to adding a child object. First you must load the parent object, then you call
the collection’s Remove method. This removes the child object from the collection, but you must call the parent’s
Save method before the object is actually removed. Similar to the Item method, the Remove method is
“overloaded”, providing two different ways to specify the child object to remove. The Remove method accepts
either the actual object or the object’s ID number as parameters. It is important to remember changes are not
actually made to the database until the parent record’s Save method is called.

29

PROGRAMMING BASICS

The following code sample illustrates deleting a transaction from an existing batch record:

"This removes oTrans from the collection.
oBatch.Transactions.Remove oTrans

"This removes the 2nd element from the collection.
oBatch.Transactions.Remove 2

"The object is not actually removed from the database
"until this step.
oBatch.Save

Whether you delete objects by the object name or ID, you get the same results. The situation determines the best
method to use.

3% No warning message appears when deleting child objects, so you should add a warning that the user is about
to delete important information.

Updating Data Objects

Each data object shares a common and very important property — Fields. Instead of exposing a unique property
for each field on a data object, Blackbaud’s developers built the Fields property to expose all the individual
updatable data elements that make up a data object. This approach is much less cumbersome and is easier to
extend. With the Fields property, when you access the Fields property from code, a list appears showing the
constants for all valid fields on the object. This way, there is no time spent searching through hundreds of
properties on an object just to find, for example, the “Full Name” field. This design also enables Blackbaud
developers to easily add new fields as the accounting product evolves, without breaking any existing code.

The following code sample shows a list of constants for fund object fields.

-'f:.:— FE_Uszer - FE_User_Macros [Code]

I(General] j ITuturiaI j

Fuhlic Sub Tutorialil)
Dim oFund &s cGLFund
Fet oFund = New oGLFund
oFund.Init FE Application.3essionContext

oFund.Load 2
oFund.Fields |
End Sub Fieldst @ GLFUNDE_fld_DATEADDED -

E GLFUNDE_fld_DATECHANGED
E GLFUMDE_fld_DEBITACCOUMNT
E GLFUMDSE_fld_DEBITACCOUMNTMASK
E GLFUNDE_fld_DESCRIPTION
(S G FLINDS_ fld_FLUNDID
E GLFUMNDE_fld_GLYFISCALPERIODSID -

_>I7‘y:

F

30

CHAPTER 2

The following code sample illustrates loading a fund from the database into a fund data object, changing the fund
ID, and saving the fund. If a user enters invalid data into the fund ID field (for example, “xxxx’”) when the Save
method is called, the data object raises a trappable error.

Dim oFund As CGLFund
Set oFund = New CGLFund

oFund. Init FE_Application.SessionContext
oFund.Load 2

"Change the fund description field
oFund.Fields(GLFUNDS_fld_FUNDID) = "25"

"Save changes
oFund.Save

“Clean Up
oFund.CloseDown
Set oFund = Nothing

Validating Data Objects

Validating data objects is much more complex than simply filtering out bad data. When validating, Visual Basic
checks every business rule in the program, regardless of whether they are custom internal rules or rules you
established in Configuration. For example, if end users attempt to enter a three-digit Fund ID when the program is
configured for two-digit funds, an error message appears:

FEAPI =] E3

fou must enter 2 letters or numbers for the Fund ID. You cannot enter blanks or special characters,

If you attempt to enter an invalid fund ID using Visual Basic code, a trappable error is raised with the same
message (accessible via the Err.Description property on the Visual Basic Error object). This validation exists to
maintain a high level of consistency and integrity in your database. The object insulates your database and prevents
“garbage” from entering the database by first validating it. This rule applies to every facet of the data element, so
you can be sure that updates using data objects are consistent with updates made by end users in the program.

Handling Data Object Errors

Before you resolve errors generated during program processing, it is important to understand the possible ways
objects communicate with your programming. As you program, many times objects need to return information to
the programs. For example, if you tried to use an account query to filter a project collection, obviously the query
would not produce acceptable results because an account query cannot find projects. In this case, an error occurs.
The query object needs some way to communicate this back to the program so you can realize a problem exists and
then fix it. You can use two methods to report errors:

* You can use return values. With return values, object methods return an error code if your code contains errors.
One advantage of this is that it enables you (in fact, it almost forces you) to handle every possible error as it
happens. However, it can be cumbersome to explicitly check for every possible error in your code.

31

PROGRAMMING BASICS

» You can also use Visual Basic’s built-in capability to raise errors. This is the method used by our accounting
objects. If proper error handling is not in place, these errors can cause the program to abort. Fortunately,

handling errors in Visual Basic is very simple and offers many flexible ways to deal with errors. Depending on

how you structure error handlers, you can handle each error in the subroutine in which it occurs, allow it to
cascade back to a central error handler for the entire program, or use a variation of the two.

Using the Err.Description Property

When an error occurs, you can access information about the error by using the Err object provided by Visual Basic.

Err.Description is a helpful property that tells you the reason for the error, such as failing to specify all required
fields when adding a new General Ledger fund through code.

Dim oFund As CGLFund
Set oFund = New CGLFund

oFund.Init FE_Application.SessionContext
oFund.Fields(GLFUNDS_fId_DESCRIPTION) = *Operating Fund*

On Error GoTo ErrorHandler
oFund.Save

"This turns off the Error Handler.
On Error GoTo O

“Clean up!
oFund.CloseDown
Set oFund = Nothing
*Always place an Exit Sub before the Error Handler
“"to prevent entering the Error Handler unintentionally.
Exit Sub
ErrorHandler:

MsgBox Err.Description, vbOKOnly

"This returns processing back to the line after where the error occurred
Resume Next

End Sub

If we run this code, the CGLFund object raises an error because not all required fields are defined. An error
message appears. (The message may vary depending on your configuration):

The Financial Edge

Default required.

32

CHAPTER 2

Using the SessionContext ErrorObject

The error object accessed via the SessionContext also provides rich error details that are set by the last data object
to raise an error (err.number=bbErr_DataObjectError). For more information, see the IBBErrorObject in the Object

Reference.

The following table displays the properties and methods for the IBBErrorObject:

Property or Method |Type Description

'ErrorDescription Get/Let Set or get the description of the error.

ErrorNumber Get/Let Set or get the error number.

InvalidField Get/Let Set or get the invalid field number.

InvalidGenericObject Get/Set Set or get a reference to a generic object. (Used when InvalidObject is nothing)
InvalidMetaObject Get/Set Set or get a reference to the invalid IBBMetaField.
InvalidObject Get/Set Set or get a reference to the invalid IBBDataObject.
InvalidRule Get/Let Set or get the invalid rule number.

Clear Sub Clear any prior error values.

RaiseGenericError Sub Raise the specified error.

TranslateError Function Get the plain language translation of the specified error number.

33

PROGRAMMING BASICS

Handling Warning Rules

Some objects have warning rules that need to be handled during a save. For instance, you might have a vendor
record with a credit limit of $100 and try to save a new invoice of $200 for this vendor. Upon save, the following
error is raised: “This invoice may cause you to exceed the current credit limit of $100.00 for this vendor”. This is a
warning rule, in that it can be overridden. Example:

Private Function AddInvoice()

Dim olnvoice As CAPInvoice
Set olnvoice = New CAPInvoice

With olnvoice
-Init gosessioncontext
-Fields(APINVOICES_fIld_AP7VENDORSID) = IVendorlID
-ApplyVendorDefaults True
-Fields(APINVOICES_fId_INVOICENUMBER) = IlnvoiceNumber
-Fields(APINVOICES_fId_DESCRIPTION) = slnvoiceDescription
-Fields(APINVOICES_fld_DUEDATE) = dtlnvoiceDueDate
-Fields(APINVOICES_fld_INVOICEAMOUNT) = CurlnvoiceAmount
-Fields(APINVOICES_fId_INVOICEDATE) = dtlnvoiceDate

Savelnvoice olnvoice
.CloseDown
End With

Set olnvoice = Nothing
Exit Function
Private Function Savelnvoice(olnvoice As CAPInvoice) As Boolean

Dim bResumeSave As Boolean
Dim IErrNum As Long
Dim sErrMsg As String

On Error GoTo ErrHandler
olnvoice.Save
Exit Function

ErrHandler:
* always cache error information before continuing
IErrNum = gosessioncontext.ErrorObject._ErrorNumber
SErrMsg = gosessioncontext.ErrorObject_ErrorDescription
HandleError bResumeSave, IErrNum, sSErrMsg
IT bResumeSave Then

bResumeSave = False
Savelnvoice = Savelnvoice(olnvoice)
End IFf
End Function

34

CHAPTER 2

(Continued- page 2 of 2)

Private Sub HandleError(ByRef bResumeSave As Boolean, ByVal IErrNum As Long, _
SErrMsg As String)

IT IErrNum = bbErr_ OBJECT WARNING Then
Select Case gosessioncontext.ErrorObject. InvalidRule
Case APInvoice_Warning_ExceedsVendorCreditLimit
"in this example we"ll just override the rule, but you could prompt the user.
Dim oWarningRule As IBBWarningRule
Set oWarningRule = gosessioncontext._ErrorObject.InvalidObject
oWarningRule.OverrideWarning(APInvoice_Warning_ExceedsVendorCreditLimit)= True
Set oWarningRule = Nothing
"try to save again
bResumeSave = True
Case Else
"test for other warning rules here...
MsgBox sErrMsg
End Select

Else
MsgBox sErrMsg

End If

End Sub

Error handling is a very important part of programming. If you carefully trap and handle errors in Visual Basic,
objects automatically communicate back to your program when they encounter errors, so programming becomes
much simpler.

Managing Data Collections

Data collections are simply groups of data objects that share common characteristics. Following standard
collection object model design practices, the accounting package always has two closely related classes that handle
exposing collections: the parent, which is always named in the plural form (for example, Actions), and the child,
which is always named in the singular form (for example, CAction).

Managing Top-Level Collections

Each top-level object has a corresponding top view collection. A distinguishing characteristic of a collection is that
the object’s name takes the plural form. For example, the top view collection object for CGLAccount is
CGLAccounts. For an introduction to top-level collections, see “Understanding Top-Level Collections” on

page 12.

Managing Child Collections

Not all child objects are exactly the same. The various types of child objects/collections and the mechanics of
programming objects and collections differ:

» Collection Type 1 — The Standard Child Collection

35

PROGRAMMING BASICS

 Collection Type 2 — The Child View Collection

The most common use of child objects in the The Financial Edge object model is via standard child collections. A
child collection, which is a collection of child objects, cannot exist without a top-level object. You can add and
remove Child objects from the collection, but you cannot save Child objects without calling the parent’s Save
method. Attributes, notes, and the history of changes are popular examples of child objects that exist on numerous
record types. Child objects cannot be directly created, loaded, saved, initialized, or deleted. All these actions are
accomplished via methods exposed by the child object’s parent object.

Child objects depend on the parent’s Save method because the parent may have to enforce rules governing

membership in the collection. When you save the parent, you also save all the child objects in the collection if they
are dirty (a change has been made). Also, all objects you remove from the collection are deleted from the database.
For more information about managing child view collections, see “Managing Child View Collections” on page 37.

@ Child objects depend on the parent’s Save method because the parent may have to enforce rules governing
membership in the collection.

Accessing Specific Child Elements

Like any Visual Basic collection, you can access The Financial Edge child objects directly via the item method.
Things get a little tricky here, though. Because a child collection provides high-level access to underlying database
records, Blackbaud’s developers needed to “overload” the behavior of the item method and provide multiple ways
to use it depending on the context from which you access the item. For example, if you pass in a string such as “5”,
the item method returns the child object with a database ID of “5”. If you pass in a number such as 5, the item
method returns the 5th member of the collection.

These two methods exist to ensure consistent access to collections across the object model. The most common use
of the item method of a child collection is to pass it a numeric parameter, accessing the “nth” item. The value of
accessing collection elements via their database ID will become more clear when you begin working with top-level
collections.

The following code sample shows using the overloaded Item method to return elements.

"Access the 5th element in the collection
With oProject.Contacts. ltem(5)

Debug.Print .Fields(GLPROJECTCONTACTS_ fld_ORGANIZATION)
End With

“Access an element of the collection that has an
“underlying database ID (primary key) of 5.
With oProject.Contacts. ltem(*'5")

Debug.Print _Fields(GLPROJECTCONTACTS_fId_ORGANIZATION)
End With

Iterating through Child Object Collections

The easiest, most efficient manner for iterating (or navigating) through child collections is through the Visual Basic
“For Each” syntax. All collections support this format. An example of iterating is a code snippet in which you print
a list of each contact attached to a project. When the last code is accessed, the loop automatically terminates. This
process is infinitely faster, both in terms of coding and executing, than listing individual child objects in the
collection.

36

CHAPTER 2

The following sample code illustrates printing a list of project contacts from a collection using “For Each”.

"Code to initialize and load a CGLProject object (oProject)
“omitted for brevity.
Dim oContact as CProjectContact

For Each oContact In oProject.Contacts
Debug.Print oContact.Fields _
(GLPROJECTCONTACTS_fI1d_ORGANIZATION)
Next oContact

The following picture displays the results of the code sample.

=-%4 FE System

EI@ The Financial Edge Chijects For Each oContact In oProject.Contacts
E FE_Application DIebug.Print oContact.Fields (GLFROJECTCONTACTS
E-25 Modules Mext oContact

1&& FE_Swstem_Macros
gl FE_System_Object_Cods
=82 FE_User

E@ Madules Cisco
; IEN

Immediate x|
FY

EI@ References
L Reference to FE System

o o

Updating Child Collection Elements

After you learn to access members of a child collection, you are only a few steps from learning to globally change
them. To modify a group of child objects, you add a line of code that updates the child data via its Fields property.
For example, to change the organization name of each contact, you add a new line of code setting the
oContact.Fields property to the new value. It is very important to note that changes are not immediately committed
to the database. Child objects do not have a Save method; the top-level parent is responsible for the save. When
you save the top-level object, all changes are validated against any program and end user business rules. If the
changes “pass” all the rule checks, the changed records are committed to the database. If a rule cannot be validated,
The Financial Edge raises a trappable run-time error. Error checking is critical for preserving database integrity.
The same rules that apply to an end user apply to your data objects. For more information about error trapping, see
“Handling Data Object Errors” on page 30.

37

PROGRAMMING BASICS

The following code sample illustrates globally changing the organization name of all contacts to XYZ, Inc.:

"Code to initialize and load a CGLProject object (oProject)
“omitted for brevity.
Dim oContact as CGLProjectContact

For Each oContact In oProject.Contacts
Debug.-Print oContact.Fields(GLPROJECTCONTACTS_fId_ORGANIZATION)

"Modify each Contact, changing the organization name
oContact.Fields(GLPROJECTCONTACTS_fld_ORGANIZATION) = *"XYZ, Inc."
Next oContact

“Important! None of the changes are saved until
“the next line of code executes
oProject.Save

Managing Child View Collections

Child view collections are collections in which you can navigate to a subset of a particular true child collection.
You cannot add to or remove from these collections using standard collection methods because they are just views
of another collection and their membership is determined by other factors, such as very specific methods on the
parent object. A good example of a child view collection is the Changes (History of Changes) collection exposed
by the Account object. When you edit a property of the account, information about the change is stored in the
Changes collection. With the Changes collection, you can view these changes. For a list of child collection
methods, see “Understanding Child Collections” on page 13.

Sorting Collections

After you know how to access and move through collections, you may want to arrange objects in a different order
from the way they normally appear in the collection. Not all collections can be sorted in this way, but many of the
more commonly used collections support sorting.

When sorting collections, there are a couple of important things to keep in mind. First, remember when using the
Item method, it returns the “nth” member based on the current sort. Second, when using top view collections, it is
possible to filter out top-level objects using a query.

If you filter the collection using a query, the query order is retained regardless of the settings. You can sort using
either of two properties. For more information about filtering collections with a query, see “Filtering Collections”
on page 38.

SortField

Use the SortField property to designate any data field available in the member object as the sort field for the entire
collection. With IntelliSense and Enums, it is very easy to select the field to sort by.

SortOrder

With the SortOrder property, you can sort in either ascending or descending order. If you do not specify a
SortOrder, the default order is ascending.

38

CHAPTER 2

The following code sample lists account descriptions in descending order:

“Initialize collection.

Dim oAccounts As CGLAccounts

Set oAccounts = New CGLAccounts

oAccounts. Init FE_Application.SessionContext

*Set the Field and Order for the sort.
oAccounts.SortOrder = Descending
oAccounts.SortField = GLACCOUNTS fld DESCRIPTION

“"Declare an instance of the top object.
Dim oAccount as CGLAccount

“Loop through the collection.
For Each oAccount In oAccounts

Debug.Print oAccount.Fields(GLACCOUNTS_fld_DESCRIPTION)
Next oAccount

Filtering Collections

Collections contain many methods and properties that make it easy to move through them to gather information. If
you do not need to see all the child objects in a collection, you can use a query to filter the child objects. In
top-level collections, you can filter child objects based on a query.

To filter a top-level collection, use the ID of the query you want to use to filter. If you know the name of the query,
you can get the query ID by using the LoadByField method explained in “Loading Top-Level Data Objects” on
page 23. Otherwise, you can iterate through the QueryObjects collection to find the query. The query type must
match the record type of the collection. For example, if you use an oAccounts collection, the query you use must be
an account query. If you specify a query of the wrong type, a trappable error message appears.

Once you know the query ID, you set the property FilterQuerylD equal to this query ID. The collection returns
only child objects contained in that query. Note that child objects are sorted into the collection in the same order as
in the query.

39

PROGRAMMING BASICS

The following code sample shows filtering accounts using the “Expenses” query:

Dim oQuery As CQueryObject
Set oQuery = New CQueryObject

oQuery.Init FE_Application.SessionContext

"This loads the query that iIs named Expenses.
oQuery.LoadByField uf_QUERY_NAME, "Expenses'

Dim oAccounts As CGLAccounts
Set oAccounts = New CGLAccounts

oAccounts. Init FE_Application.SessionContext

"This tells the collection which query (Expenses) to filter with.
oAccounts.FilterQuerylD oQuery.Fields(QUERIES7_fld_QUERIESID)

"From here on, we can use the oAccounts collection and it will only
“contain CGLAccount objects that are in the Expenses query.

Managing User Interface Objects

To get the information you need from the end user, you must have some sort of user interface (Ul). In many
instances you must design a custom form to accomplish your program’s goals, but in some cases, you can use a
form that already exists in The Financial Edge. Using an existing form in your project is a simple way to save
programming time, and it makes the program easier for the end user because they are already familiar with the
forms. In The Financial Edge, all top-level objects have user interface forms. When a form appears, it is fully

functional and contains all toolbars and menus, so end users can perform the same operations they normally do
within the program.

You can use many user interface forms in the program. Although different forms may have some different methods
and properties depending on their use, all forms do have some things in common:

» They always have an Init method that accepts a SessionContext and a CloseDown method.
» They have a property that accepts a data object that “matches” the form.

» They always have the ShowForm method. This is what actually displays the form. ShowForm accepts four
optional parameters:

Parameter Variable Type |Description

bModal Boolean Determines whether the form appears modally. Defaults to False.

oFormToCenterOn Object The Ul Form appears centered over the form specified here.

bDoNotCloseDataObject |Boolean If set to True, the data object passed to the form is still initialized and may be
used after the user closes the form.

oMoveServer IBBMoveServer | This establishes how the “VCR” buttons on the form function.

An example of a user interface form is the CGLAccount. The CGLAccountForm needs an Account object so it can
make changes or create a new record based on user interaction. If a new data object is passed and the user saves the
form, the program creates a new record. If an existing data object is passed and the user saves the form, the

program saves changes to the existing record. You can also use the data object’s fields property to fill some fields
before the user views the form.

40

CHAPTER 2

The following code sample illustrates displaying a user interface form to create accounts:

Dim oAccount as CGLAccount
Set oAccount = New CGLAccount
oAccount. Init FE_Application.SessionContext

"I we wanted to show an existing Account, we would load it here.

*Or we could set some of the .Fields before we display the Account.
oAccount.Fields(GLACCOUNTS_fld_ACCOUNTNUMBER) = "06-1111400-00-00""
oAccount.Fields(GLACCOUNTS_fld_DESCRIPTION) = "Investment Asset"
oAccount.Fields(GLACCOUNTS_fld_STATUS) = "Active"
oAccount.Fields(GLACCOUNTS_fld_CASHFLOW) = "Cash and Cash Equivalents™
oAccount.Fields(GLACCOUNTS_fld_WORKINGCAPITAL) = *"Current Assets™

Dim oForm as CGLAccountForm
Set oForm = New CGLAccountForm
oForm.Init FE_Application.SessionContext

"This must be done first or an error is raised.
Set oForm.AccountObject = oAccount

*This displays the form modally, centered over frm_Main.
oForm.ShowForm True, frm_Main

“Clean up!
oForm.CloseDown
Set oForm = Nothing

oAccount.CloseDown
Set oAccount = Nothing

Visual Basic Interfaces

One of the powerful features of Visual Basic is that it supports the use of interfaces. An interface is an advanced
programming technique Financial Edge developers use to make the program code more efficient and easier to
maintain. An interface is like a contract. Any class that implements a specific interface guarantees the class
supports a certain type of behavior. Many objects in The Financial Edge object model implement other interfaces.
For example, all data objects, such as CGLFund, or CGLAccount, implement the IBBDataObject interface. This
provides a way for you to refer to any data object that implements IBBDataObject in a generic fashion. Referring to
the IBBDataObject interface gives you access to some properties and methods not available when referring to the
actual class.

Using the IBBDataObject Interface

By referring directly to the IBBDataObject interface, you can use the Initialized property to find out whether an
object has been initialized, and you can use the Dirty property to determine whether an object has changed since it
was last saved.

41

PROGRAMMING BASICS

Another important property of the IBBDataObject interface is the ObjectName property. This returns the name of
the class of object you are using. One of the most important properties is the MetaField property, which provides
access to information about the types of data a field expects. In the following code sample, notice that it includes a
reference to the IBBTopObject interface. All top-level objects implement this interface. Using this interface
provides a way to refer to and access the methods and properties common to all top-level objects.

Private Sub Usinglnterfaces(oTopObject As IBBTopObject)

Dim olBBDataObject As IBBDataObject
Set olBBDataObject = oTopObject

"This makes sure that the object passed in has been initialized.
IT Not olBBDataObject. Initialized Then

oTopObject.Init FE_Application.SessionContext
End IFf

"Allows you to find out what class has been passed
Select Case olBBDataObject.OBJECTNAME
Case "CGLAccount™
olBBDataObject.Fields(GLACCOUNTS_fId_DESCRIPTION) = "New Account™
Case "CGLAccountCode™
olBBDataObject.Fields(GLACCOUNTCODES fld_DESCRIPTION) = "New Account Code"
Case "CGLProject™

olBBDataObject.Fields(GLPROJECTS_fId_DESCRIPTION) = "New Project"
End Select

IT olBBDataObject.Dirty Then oTopObject.Save

"Clean Up!
Set olBBDataObject = Nothing

End Sub

Using the IBBMetaField Interface

The IBBMetaField interface provides a convenient way to look up and change information about individual data
fields used in The Financial Edge. For example, in designing your programs, you may need to know if a particular

field has been defined as required in Configuration, or you may need to know the type of data a specific field
requires, such as date, number, or percentage.

Every data object in The Financial Edge object model provides an IBBMetaField interface to determine this
information. Each data object has a Fields property and an array of the actual data in each field. Most of the
properties in the IBBMetaField interface return a similarly numbered array. This makes using the IBBMetaData
and the actual data object together much simpler.

Property

Return Value

Description

DisplayText

String

This returns the user-defined Display As text for this
field.

FormatDescription

EFormatDescriptors

This returns the type of data contained in this field.

Required

Boolean

This returns True if the field is required.

UserRequired Boolean This returns True if this is a field the user has
selected to make required.
UserHidden Boolean This returns True if the user has selected to make this

field hidden from view.

42

CHAPTER 2

You can set some properties through your program. For example, you can change DisplayText, UserHidden, and
UserRequired. The Save method saves those changes to the database.

The following code sample shows using these IBBMetaField properties to load an array of text boxes and
accompanying labels and enable changing the Display Text. The IBBDataObject interface returns a reference to
the IBBMetaField interface.

Option Explicit

Private moAction As CGLAccount
Private moMetaField As IBBMetaField
Private moDataObject as IBBDataObject

Private Sub Form_Load()
Dim 1 As Integer

Set moAction = New CGLAccount
moAction. Init FE_Application.SessionContext

"Provides access to the IBBMetaField interface for the moAction object
Set moDataObject = moAction
Set moMetaField = moDataObject.MetaField

For 1 = 1 to moMetaField.Count

"If the field should be hidden we want to skip it.
IT Not moMetaField.UserHidden(i) Then
"This is determined in Configuration.
Labell(i) .Caption = moMetaField.DisplayText(i)

"You need to check if it is system-required or

"if it is user-required.

IT moMetaField.Required(i) Or moMetaField.UserRequired(i) Then
Labell1(i) -ForeColor = vbRed

End IFf

IT moMetaField.FormatDescriptor(i) = FfmtAMOUNT Then
Textl(i).Text = "$" & Textl(i).Text

End IFf

End If
Next 1

End Sub
Private Sub Labell DblIClick(Index As Integer)

Dim s As String
s = InputBox("'Enter the new Display Text')

IT Len(s) Then
moMetaField.DisplayText(Index) = s
"This must be called to save the user®s changes.
moMetaField.Save

End IFf

43

PROGRAMMING BASICS

(Continued- page 2 of 2)

End Sub

Private Sub Form_Unload(Cancel As Integer)
"Clean up!
Set moMetaField = Nothing

set moDataObject = Nothing

moAction.CloseDown
Set moAction = Nothing

End Sub

Managing Service Objects

Using service objects, you can access discrete functionality within the application. Service objects include, but are
not limited to, queries, reports, viewers, search screens, and some forms. A major advantage of service objects is
that they enable you to quickly assemble solutions that leverage existing Financial Edge functionality, while at the
same time presenting users with a familiar interface.

Managing Query Objects

A query is composed of a group of objects that provides query functionality in The Financial Edge object model.
These objects include:

* CQueryObject

* CQueryObijects

e CQuerySet

e CStaticQ

These objects provide programmatic access to existing queries, provide access to the output of a query, and enable
you to create a new static query you can use elsewhere in The Financial Edge.

Opening a Query

Opening an existing query works like opening a data object. You access information about a query through the
CQueryObiject. First, you must initialize the object and then load it. Like data objects, you can use a Load method
if you know the query ID. You can also loop through the CQueryObijects collection to locate the query. After you
load the query, you can access its result set.

The following code sample displays loading a query with a database ID of 5:

Dim oQuery as CQueryObject
Set oQuery = New CQueryObject

oQuery.Init FE_Application.SessionContext

"Load the query using the Database ID
oQuery.Load 5

44

CHAPTER 2

Processing a Query Result Set

By processing a query result set, you can move line by line through the results of a query. You can access a query
result set in two ways. If you are already using a CQueryObiject, you can access its result set with the Queryset
method:

Dim oQuery as CQueryObject
Set oQuery = New CQueryObject

oQuery.Init FE_Application.SessionContext

"Load using the query name
oQuery.LoadByField uf_QUERY_NAME,"Account Managers"

"This opens the result set for access
oQuery.QuerySet.OpenQuerySet

Or, if you know the query’s database ID, you can start with a CQueryset object:

Dim oQuery as CQuerySet
Set oQuery = New CQuerySet

oQuery.Init FE_Application.SessionContext

"This uses the database ID of the query
oQuery.QueryID = 10

"This opens the result set for access
oQuery .OpenQuerySet

Both of these examples accomplish the same thing. In either case, you must reference a query result set. You can
use a few properties to help access the data from the result set:

Property Returns
[FieldCount | The number of fields in the output of the query

FieldName An array of the field names in the output

FieldType An array of the field types, for example, Date, Double, Long, Memo, Text
FieldValue An array of the actual data for the current row

RowNum The number of the current row

At this point, you can loop through the result set to gather the data you need:

Debug-Print oQuery.FieldName(1) & " " & oQuery.FieldName(2)

Do While Not oQuery.EOF
"This is where you would access the fields.

Debug.-Print oQuery.FieldValue(l) & ™ " & oQuery.FieldValue(2)
oQuery.MoveNext

Loop

“"Clean up.

oQuery.CloseDown
Set oQuery = Nothing

45

PROGRAMMING BASICS

Creating Static Queries

Using the CStaticQ object, you can create static queries in your code. Static queries are lists of unique IDs. If you
create a static query in your code, you cannot open it in Query because it has no sort, filter, or output fields.
However, other queries and processes that use queries, such as Mail or Reports, can use static queries. Static
queries are ordered and have no duplicates. To create a static query, you use three methods plus the Init and
CloseDown methods.

> Creating a static query using the CStaticQ object

1. To create a new query, use the Create method, which displays the same Create Query form used in
The Financial Edge. The user specifies the name and other information about this query. If the user clicks
Cancel, the Create method returns False. Abort the process if the Create method returns False. For
information about aborting the creation of a static query, see the EndCreate parameter bCancel in step 3.

Parameter Variable Type |Description

SearchType bbSearchTypes |Determines types of records included in the query

aFromProcessName |String Each query stores the name of the area of the program in which it was
created; you may put the name of your application here

FormToCenterOn Object ;I]'he Create Query form displays itself centered over the object specified

ere

sDescription String Optional: you can input a default Description for the new query

ISystemID Long Optional

sDefaultQName String Optional: you can input a default name for the new query

2. To add the database IDs of records to include in the query, use the AddRecord method and pass the ID as
the only parameter. The AddRecord method verifies this is not a duplicate ID and then adds it to the query.
This is the only step required to add a record to the query.

3. To finish creating the query and write the information to the database, call the EndCreate method. Until
this is called, the IDs are just stored in memory. EndCreate has three parameters:

» FormToCenterOn accepts an object. When EndCreate is called, it normally displays a Writing Static
Records form while it is writing IDs to the database. You can specify the form on which the Writing
Static Records form centers itself.

» bCancel is an optional parameter that defaults to False if nothing is passed. If your code allows a user to
cancel the creation of the query after calling the Create method, it is important to call the EndCreate
method and pass True for this parameter. The query is not created, but this frees the memory used to
keep track of the IDs for the query.

46

CHAPTER 2

» bNoUI is an optional parameter. To keep the program from displaying the Writing Static Records form,

set this to True.

Dim oProject As CGLProject
Set oProject = New CGLProject

Dim oProjects As CGLProjects
Set oProjects = New CGLProjects
oProjects. Init FE_Application.SessionContext

Dim oStaticQuery As CStaticQ
Set oStaticQuery = New CStaticQ

oStaticQuery.Init FE_Application.SessionContext

"This prompts the user for a Query Name but

“everything is already filled in.

IT oStaticQuery.Create(SEARCH_GLPROJECT, '"Custom App", Me, _
"Projects that have an Education type", , _
"Education Projects'™) Then

For Each oProject in oProjects
"This checks each project to see if its type is "Education™.
IT oProject.Fields(GLPROJECTS fld_TYPE) = "Education™ Then

"This adds the ID to the query.
oStaticQuery.AddRecord
oProject.Fields(GLPROJECTS_fIld_GL7PROJECTSID)

End If
oProject.CloseDown
Next oProject

Set oProject = Nothing

oProjects.CloseDown
Set oProjects = Nothing

*"After we have all of our records in the query,
"we write the data to the database.
oStaticQuery.EndCreate Me, False, False

oStaticQuery.CloseDown
Set oStaticQuery = Nothing
Else
"This means the user canceled when entering the query name.
MsgBox 'No query created'™, vbOKOnly
End 1T

47

PROGRAMMING BASICS

Managing Report Objects

Report objects work together to access Financial Edge reports and mail functionality programmatically. Because
mail functions also use Crystal Reports, it makes sense to provide one set of objects to print reports and process
mail functions. These objects appear in a hierarchy that represents the way they are accessed in The Financial
Edge. For example, when you select Reports from the navigation bar, the Reports page appears, listing report
categories such as Financial Reports or Invoice Reports. When you click a category, a list of the report types in
that category appears, such as Income Statement or Invoice History. If you create a new report, a screen opens
containing tabs on which you define parameters for that report. Report objects follow the same hierarchy, but,
depending on the needs of your task, you can enter the object model from any object and create each class
independently. You do not directly create report objects as you do other objects. To create a new ReportCategories
or ReportCategory object, use the FE_Services object.

In this hierarchy, IBBReportCategories is a collection of IBBReportCategory objects. These represent the
categories of reports or mail selections, such as Financial Reports or Invoice Reports in Reports or Forms in Mail.
The next level is the IBBReportTypes and the IBBReportType objects — these represent specific reports such as
the Balance Sheet, Income Statement, or Batch Detail Report. The last level of the hierarchy includes the
IBBReportinstances and IBBReportInstance objects. These correspond to the individual parameter files you can
save for each report. At this level, you can allow users to preview or print the report or create a new set of
parameters for the report type.

IBBRe por tCategories

h 4

h 4

IBBReportCateqgory IBBReportTypes

-

h

IBBReportType IBBReportInstances

h 4

IBBR.eportInstance

Reports Categories Collection

Reporting and mailing functions are broken down by similar functionality into categories such as Financial
Statements, Vendor Reports, and Forms. Each of these categories is represented by an IBBReportCategory object.
Use the FEService object to create both IBBReportCategories and IBBReportCategory objects. For more
information about these objects, see “Report Objects Example” on page 51. After you create an
IBBReportCategories collection, use the Init method. This is similar to the Init method used for other objects to
initialize them.

48

CHAPTER 2

The following table lists parameters for Report Categories Collections’ Init method:

Parameter Variable Type Description
SessionContext IBBSessionContext |Used to initialize all objects.
ActiveSystem Long Determines reports to include in the collection. General Ledger and

Accounts Payable are examples of ActiveSystems. For a complete list
of available arguments, see the Object Browser and search for

‘ActiveSystem’.
ISubCategoryOfCategoryID |Long Optional: Reserved for future use.
CategoryFilter EBBRep_ Optional: Use to specify whether to include only Report, Mail, or both

ReportCategoryFilters | IBBReportCategory objects in the collection. This defaults to include
only Report IBBReportCategory objects.

QueMode Boolean Optional: Establishes how errors are addressed when using the
collection. If set to True, an error log file is created, but the program
continues to process. If set to False (the default), a trappable error is

raised.
ShowMembers_ Boolean Optional: Use this to include only IBBReportCategory objects in the
BasedOnSecuritySettings collection that a user has the security rights to view. If set to False, the

collection includes all objects, regardless of the user’s security;
however, users cannot run reports without security rights. This
parameter defaults to True.

ShowCannedReportsOnly {Boolean Optional: There are some IBBReportCategory objects that represent
reports not accessed via Reports, such as control reports in Query or
Global Add. If this is set to True (the default) only the
IBBReportCategory objects representing categories found in Reports
are included in the collection.

When you initialize IBBReportCategories, you can use a “For Each” construct to loop through it, or you can use
the Item property to access the IBBReportCategory objects in the collection. If you enter the report hierarchy
directly from an IBBReportCategory object, you need to call its Init method, first. Some Init parameters for the
IBBReportCategory are similar to parameters for the IBBReportCategories, but they work slightly differently. The
IBBReportCategory object contains a ReportTypes method that returns an IBBReportTypes collection of
IBBReportType objects. The ShowMembersBasedOnSecuritySettings and ShowCannedReportsOnly parameters
filter the IBBReportType objects included in the IBBReportCategory.ReportTypes collection.

The following table lists parameters for Report Category Objects’ Init method:

Parameter Variable Type Description

SessionContext IBBSessionContext |Used to initialize all objects.

CategorylD EBBRep_ This is an Enum of all the categories of reports in The Financial Edge.
ReportCategories

QueMode Boolean Optional: Establishes how errors are addressed when using the object. If set

to True, an error log file is created, but the program continues to process. If
set to False (the default), a trappable error is raised.

ShowMembersBased_ Boolean Optional: Use this to include only the IBBReportCategory.ReportTypes
OnSecuritySettings collection objects a user has security rights to view. If set to False, the
collection includes all objects, regardless of the user’s security; however,
users cannot run reports without security rights. This defaults to True.

ShowCannedReportsOnly |Boolean Optional: Some IBBReportType objects represent reports not accessed via
Reports. If set to True (the default), only the IBBReportType objects
representing reports found in Reports are included in the
IBBReportCategory.ReportTypes collection.

When you initialize the object, you can access its ReportTypes property to move farther down the hierarchy of
report objects. For more information about creating and using these objects, see “Report Objects Example” on
page 51. For more information about other properties and methods of these two objects, see the Programming

Reference in the VBA and API help file.

49

PROGRAMMING BASICS

Reports Types Collection

You can access collections and objects that represent the highest level of the reports hierarchy — report categories.
First, use the FE_Services object to create either an IBBReportTypes collection or an IBBReportType object. For
more information about creating these objects, see “Report Objects Example” on page 51. Next, call the Init
method. The Init method has some parameters that can filter the IBBReportType objects you want to include in the
collection.

The following table lists parameters for Report Types Collections’ Init method:

Parameter Variable Type Description

SessionContext IBBSessionContext Used to initialize all objects.

CategoryID EBBRep_ReportCategories |This is an Enum of all report categories so that only ReportTypes
that are a part of this category are included in the collection.

QueMode Boolean Optional: This establishes how errors are addressed when using the

collection. If it is set to True, a log file is created containing any
errors, but the program continues to process. If set to False (the
default), a trappable error is raised.

ShowMembers_ Boolean Optional: This includes in the collection only IBBReportType
BasedOnSecuritySettings objects the user has security rights to view. If set to False, the
collection includes all objects, regardless of the user’s security;
however, users cannot run reports without security rights. This
defaults to True.

ShowCannedReportsOnly |Boolean Optional: Some IBBReportType objects represent reports not
accessed via Reports, such as control reports in Query or Global
Add. If set to True (the default), only the IBBReportType objects
representing ReportTypes found in Reports are included in the
collection.

After initializing the IBBReportTypes collection, you can iterate through the collection or select an
IBBReportType object by using the Item method. If you already know the type of report you want to access, you
can enter the report hierarchy at the IBBReportType object. As always, call the Init method and provide the
parameters to access the correct report.

The following table lists parameters for Report Type Objects’ Init method:

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to initialize all objects.
ReportTypelD EBBRep_ReportTypes |This is an Enum of all Report types so you can specify the report to access.
ShowOnlyMyReports |Boolean Optional: If this is set to True, the collection contains only

IBBReportInstance objects that represent parameter files created by this user.
If set to False (the default), all parameter files available to the user are
represented in the collection.

When you initialize the IBBReportType object, you can access its read-only properties to get more information
about this particular report. It also has a ReportInstances property, so you can access the last levels of the report
hierarchy. Here, you can actually process a report.

Report Instances Collection

You can process reports only at the lowest level of the report object hierarchy. Using the IBBReportinstances and
IBBReportinstance objects, you can access any parameter files that already exist, and you can permit users to
create new parameter files using the same forms they use in The Financial Edge.

The IBBReportInstances object is a collection that represents all the parameter files for a particular type of report.
As with the report objects, you create it with the FE_Services object. For more information about these objects, see
“Report Objects Example” on page 51. When you create the object, use the Init method to initialize it. When the
you initialize the collection, you can use any standard process to iterate through the collection.

50

CHAPTER 2

The following table lists parameters for Report Instances Collections’ Init method:

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to initialize all objects.

ReportTypesID EBBRep_ReportTypes | This is an Enum of all the Report types. Only ReportInstances for the type
specified here are included in the collection.

QueMode Boolean Optional: This establishes how errors are addressed when using the

collection. If set to True, a log file is created containing any errors, but the
program continues to process. If set to False (the default), a trappable error is
raised.

ShowOnlyMyReports |Boolean Optional: If this is set to True, the collection contains only
IBBReportInstance objects that represent parameter files created by this user.
If set to False (the default), all parameter files available to the user are
represented in the collection.

If you use the IBBReportinstance object to enter the hierarchy, first call the Init method. The following table lists
parameters for Report Instance Objects’ Init method:

Parameter |Variable Type [Description

SessionContext | IBBSessionContext | This is the same SessionContext used to initialize all objects.

QueMode Boolean Optional: This establishes how errors are addressed when using the collection. If set to
True, a log file is created containing any errors, but the program continues to process.
If set to False (the default), a trappable error is raised.

After you initialize an IBBReportInstance, you can either load an existing parameter file or create a new one. To
load an existing IBBReportinstance, all you need to know is the ReportParameterID, which is the database ID of
the parameter file. After you use the Load method, or if you are creating a new parameter file, call the Process
method. The following table lists parameters for the Process method of IBBReportinstance:

Parameter Variable Type Description

Action EBBRep_ProcessOptions This is an Enum of the process options available.

ShowModal Boolean Optional: This determines whether the Process form (this varies, depending
on the action) is displayed modally. This defaults to False.

FormToCenterOn |Object Optional: This determines over which object the Process form appears. If
nothing is passed, the form appears in the center of the screen.

The Process method supports a number of actions that are enumerated as EBBRep_ProcessOptions. These include
EBBRep_ProcessOption_ShowParameterForm; this shows the parameter form for the particular report type you
are using. If you have not called the Load method, a new parameter form is displayed that allows the user to
complete the parameters and save and run the report from the parameter form. If you have called the Load method,
the form appears with the parameters already displayed, enabling users to edit the parameters and run the report. To
not display the parameters, you can use the other EBBRep_ProcessOptions to print, print preview, export, send as
mail, or view the report layout. For more information about other properties and methods available, see the
Programmer’s Reference section of the VBA and API help file.

It is important that when you finish using an IBBReportInstance you call the CloseDown method. Even though it
may return False, indicating it cannot be closed at this time, it sets an internal flag and cleans everything up as soon
as the user closes the report. For example, after you call the Process method with an action of Preview, you may
call the CloseDown method. When the user closes the preview window or exits the application, the object releases
the resources it was using. However, you should make sure you do not need to access any property or method from
the object after calling CloseDown because once it is called, the object acts as if it is closed down even if the
preview window or parameter form is still open.

51

PROGRAMMING BASICS

Report Objects Example

The following code sample illustrates using Report objects to add all possible report categories, types, and
instances to a treeview.

Option Explicit
Private FEService As FE_Services
Private Sub Form_Load()

Dim oReportCategories As IBBReportCategories
Dim oReportCategory As IBBReportCategory

Dim oReportTypes As IBBReportTypes

Dim oReportType As IBBReportType

Dim oReportlnstances As IBBReportlnstances
Dim oReportlnstance As IBBReportinstance

"This is the class that we use to create the Report objects
Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

Set oReportCategories = FEService.CreateServiceObject(bbsoReportCategories)

oReportCategories. Init FE_Application.SessionContext,1, ,_
bbrep_ReportCategoryFilter_Reports, False, True, True

For Each oReportCategory In oReportCategories

TreeViewl._Nodes.Add , , oReportCategory.CategoryName, _
oReportCategory.CategoryName

"You can also use oReportCategory.ReportTypes

Set oReportTypes = FEService.CreateServiceObject(bbsoReportTypes)

oReportTypes. Init FE_Application.SessionContext, _
oReportCategory.CategorylD, False, True, True

For Each oReportType In oReportTypes
TreeViewl.Nodes.Add oReportCategory.CategoryName, _
tvwChild, "Type" & Str$(oReportType.ReportiD), _
OReportType.ReportName

"You can also use oReportTypes.Reportlinstances
Set oReportlnstances = _
FEService.CreateServiceObject(bbsoReportinstances)
oReportlnstances. Init FE_Application.SessionContext, _
oReportType.ReportlD, False, False

For Each oReportlnstance In oReportlnstances
With oReportlnstance
TreeViewl.Nodes.Add "Type" & Str$(oReportType.ReportiD), _
twwChild, _
Str$(-Property(bbrep_Property_ReportParameterNamesiD)), _
-Property(bbrep_Property_Name)

52

CHAPTER 2

(Continued- page 2 of 2)

.CloseDown
End With
Next oReportlnstance
Next oReportType

Next oReportCategory

End Sub

Use Report objects to display parameters for the report instances users select so they can change parameters. Users
can print, print preview, or save changes in the Reports section of The Financial Edge. When the parameter form
appears, the user can perform any normal Financial Edge operation without any additional code.

Private Sub TreeViewl DblIClick()
Dim IKey As Long

"This makes sure that they have chosen an
"Instance and not a Type or Category
IT Left$(TreeViewl.Selectedltem.Key, 8) = "Instance" Then

Dim oReportinstance As IBBReportinstance

"This uses the Key from the parent (the Report Type) to specify what Type
“of report this is.

IKey = Int(Mid$(TreeViewl.Selectedltem.Parent.Key, 5))

Set oReportlnstance = FEService.CreateReportlnstance(lKey)
oReportinstance. Init FE_Application.SessionContext

"This uses the Key from the Instance to Load the correct parameter file
oReportinstance.Load Int(Mid$(TreeViewl.Selectedltem.Key, 9))

"This displays the Parameter form. At this point the user can do

"anything available In The Financial Edge.

oReportlnstance.Process bbrep_ProcessOption_ShowParameterForm, False, Me
"At this point, we no longer need to access oReportlnstance so we

“call CloseDown. It will not be able to close right away but will close as
"soon as the user closes the parameter form or exits the app.
oReportlnstance.CloseDown

End 1If

End Sub

53

PROGRAMMING BASICS

Using the Code Tables Server

In The Financial Edge, a code table is a list of acceptable values for a particular data field. A user must select from
that list or, if he or she has the proper security rights, add a new entry to the list. Code tables are used extensively
throughout the program. For example, on account records, in the Class field, you can select from a list of classes.
This same code table appears throughout the program. Allowing a user to select an entry from a list of options
simplifies data entry, minimizes typing, and helps maintain consistency in data entry. You can reduce the size of
the database by storing the number that relates to the table entry rather than the actual text. The
CCodeTablesServer object provides many methods that make using code tables in your code much easier.

First, use the FE_Services object to create an instance of the CCodeTablesServer. Next, call the Init method and
provide the SessionContext; you can then use any of the object’s methods and its collection of CCodeTable
objects, which contain information about all code tables in the program. Because there may be many opportunities
to use a CCodeTablesServer in the program, you may want to place this initialization code in the Form_Load.
When you no longer need the object, call the CloseDown method. You can place this in the Form_Unload. The
LoadCombo method in the CCodeTablesServer provides a simple way to load a Visual Basic combo box with the
entries for a particular code table.

The following table lists parameters for the LoadCombo method of the CCodeTablesServer:

Parameter |Variable Type Description

oCombo Object This is the combo box you want to load.

ITableNumber |ECodeTableNumbers |This is an Enum of all of code tables available in the program.

bUseShort Boolean Optional: Some code tables have both short and long descriptions. Normally, you use

the long description, but if you need to use the short description, set this to True.
False is the default.

bActiveOnly |Boolean Optional: In The Financial Edge, you can mark table entries Inactive if they are
not likely to be used anymore. If set to True (the default), only entries that are not
flagged as Inactive appear.

bClearCombo |Boolean Optional: If set to True (the default), any entries in the combo box are cleared before
the combo is loaded.

54

CHAPTER 2

The following code sample illustrates using the LoadCombo method to add table entries:

Option Explicit

Private moFEService As FE Services
Private moCodeTablesServer As CCodeTablesServer

Private Sub Form_Load()
"This is the class that we use to create the service objects
Set moFEService = New FE_Services
moFEService. Init FE_Application.SessionContext
"This creates an instance of the CodeTableServer
Set moCodeTablesServer = FEService.CreateServiceObject(bbsoCodeTablesServer)

moCodeTablesServer.Init FE_Application.SessionContext

"This loads the combo with the entries from the GLClass table
moCodeTablesServer.LoadCombo Combol, ctnumGLClass, False, True, True

End Sub
Private Sub Form_Unload(Cancel As Integer)

moCodeTablesServer.CloseDown
set moCodeTablesServer = Nothing

End Sub

If you provide the database 1D, you can use the GetTableEntryDescription method to get the table entry description
and use the GetTableEntrylD method to obtain table entry IDs.

The following table illustrates retrieving the database ID and description from a General Ledger class table:

Dim ILong As Long
Dim sString As String

“"ILong will equal the database ID for the entry
""Unrestricted Net Assets™ in the GLClass table. However this number
*will vary from database to database.

ILong = moCodeTablesServer.GetTableEntryID("'Unrestricted Net Assets", _
ctnumGLClass, False)

"sString will equal *"Unrestricted Net Assets™
sString = moCodeTablesServer.GetTableEntryDescription(lLong, ctnumGLClass, False)

Using the Table Lookup Handler

The TableLookupHandler object works together with the CodeTablesServer to provide code table functionality
present in The Financial Edge. With the TableLookupHandler, you can add a new entry to a code table and
display the table entry maintenance form used in the program so users can add, delete, or reorder code table entries.
For more information about the CodeTablesServer, see “Using the Code Tables Server” on page 53.

55

PROGRAMMING BASICS

The following picture displays the table entry maintenance form.

Cash Flow E2 I

A Mew Table Entry = |Onzr o lnsert 4 Dzlaiz = Print

Description I

Cazh Flows from Operating Activities

Cazh Flows friom Investing dchivities

Cazh Flows from Financing Activities

é[ia:z:h and Cash Equivalents

Select I Cancel |

You use the FEService object’s CreateServiceObject method to create an instance of the object and then call the
Init method. Besides providing the usual SessionContext, you can also provide a reference to an existing
CodeTablesServer object. This is not required, but it speeds the initialization process. As with the
CodeTablesServer, it is best to place this in your Form_Load so you can use it throughout the form. You can place
the CloseDown method in the Form_Unload to release all resources when you are finished. To display the
maintenance form so a user can select, add, delete, and sort table entries, call the ShowForm method.

The following table shows parameters for the ShowForm method of CTableLookupHandler:

Parameter Variable Type Description

ICodeTablelD ECodeTableNumbers | This is the ID for the code table you want to appear.

IFindItemData Long Optional: This is the database ID for the table entry you want to have focus when
the form appears.

oFormToCenterOn |Object Optional: This is a reference to the form over which you want the maintenance
form to appear. If nothing is passed, the form appears in the center of the screen.

Before you display this form, you can set two properties that influence how the form appears. If you set the
ReadOnly property to True, the user will not be able to use the form to add, delete, or reorder table entries. If you
set the ShowlnactiveEntries property to True, table entries marked as Inactive are included on the form. The
Canceled property returns a boolean that tells you whether the user canceled the form. The Selectedltem property
returns the database ID of the table entry the user selects. If the user selects no item, it returns a 0 and if an error
occurs, the property returns -1. In The Financial Edge, if a user double-clicks the label for a table entry field, the

maintenance form appears.

56

CHAPTER 2

The following code sample creates a working code table maintenance form using the TableLookupHandler:

Option Explicit

Private moCodeTablesServer As CCodeTablesServer
Private moTableLookupHandler As CTablelLookupHandler

Private Sub Form_Load()

"Since the TableLookupHandler uses a CodeTablesServer object,

"we can create it first.

Set moCodeTablesServer = FEService.CreateServiceObject (bbsoCodeTablesServer)
moCodeTablesServer.Init FE_Application.SessionContext

Set moTableLookupHandler = FEService.CreateServiceObject(bbsoTableLookupServer)
"We pass the reference to moCodeTablesServer to speed the Init process.
moTableLookupHandler.Init FE_Application.SessionContext, moCodeTablesServer

End Sub
Private Sub Labell DblIClick()

moTableLookupHandler _ReadOnly = True
moTableLookupHandler .ShowlnactiveEntries = True

"By setting sFindltemData, if there is already a table entry in

“the combo box, that entry will have focus when the form is displayed.

moTableLookupHandler .ShowForm ctnumGLCashFlow, _
moCodeTablesServer._GetTableEntrylD(Combol.Text, ctnumGLCashFlow), Me

*"If the user cancels the maintenance form then we don®"t want to change
*what is already in the combo box.
IT Not moTableLookupHandler.Canceled Then
"This uses the Selectedltem property to fill in the Combo box.
Combol.Text = moCodeTablesServer.GetTableEntryDescription _
(moTableLookupHandler.Selectedltem, ctnumGLCashFlow, False)
End If

End Sub

With the TableLookupHandler object, you can also add new table entries that do not have a short or long
description to the table throughout the program by using the AddEntry method. When this method is called, the
new entry is immediately added to the database.

The following table lists parameters for the AddEntry method of CTableLookupHandler:

Parameter Variable Type |Description

bAddOnTheFly Boolean This should always be set to True so the new table entry is immediately added to the
database.

ICodeTablelD Long Optional: This is the code table number to which this table entry belongs. If you do
not specify this, the current code table set within TableLookupHandler is used.

sShortDescription |String Optional: This is the short description for this table entry.

sLongDescription |String Optional: This is the long description for this table entry.

oForm Object Optional: The AddEntry method calls this object’s Refresh method.

57

PROGRAMMING BASICS

The following code sample illustrates adding new table entries using the AddEntry method:

Private Sub Combol_LostFocus()
Dim sMsg as String
IT Len(Combol.Text) > O Then
With moCodeTablesServer

"GetTableEntrylID will return a O if the current text is not in
"the table.
IT .GetTableEntrylD(Combol.Text, ctnumGLCashFlow, False) = O Then
sMsg = Do you want to add "' & Combol.Text & ™" to the " & _
-TABLENAME(ctnumGLCashFlow) & ™ table?"

IT MsgBox(sMsg, vbQuestion + vbYesNo) = vbYes Then
"This adds the current text to the database and
"Refreshes Combol. If the AddEntry is unsucessful
“this will return False.
IT Not moTableLookupHandler . AddEntry(True, _
ctnumGLCashFlow, , Combol.Text, combol) Then
MsgBox *"Unable to add entry", vblnformation + vbOKOnly
End If

Else
*If they don"t want to add to the table, then they need to
"pick something that is already on the list.
Combol.SetFocus
End If
End If
End With

End If

End Sub

Using the Attribute Type Server

The AttributeTypeServer object provides access to a collection of methods used to gather information about any of
the attributes in The Financial Edge. You can use this information to manage attributes on your custom forms.
Attributes in the program consist of a category, description, date, and comment. When you create the attribute, the
type of information contained in the description is also defined. The description can be in text, number, date,
currency, yes/no, or table format. If the description type is a table, you may also want to use the CodeTablesServer
and TableLookupHandler. For more information about the CodeTableServer, see “Using the Code Tables Server”
on page 53. For more information about the TableLookupHandler, see “Using the Table Lookup Handler” on
page 54.

58

CHAPTER 2

First, use the FE_Services object to create a new instance of the AttributeTypeServer. After you create the object,
call the Init method, passing a valid SessionContext. As with other service objects, we recommend you place this in
the Form_Load so these methods are available throughout the form. You must also call the CloseDown method
when you finish using the object, preferably in the Form_Unload.

The GetAttributeTypelD method requires two parameters, a String, which is the attribute category you are looking
for, and an Enum of the different kinds of attributes (for example, account or project). The method returns a Long
that is the database ID for this particular attribute. Once you know the attribute 1D, you can use that ID to find out
more information about the attribute. The inverse of this function is the GetAttributeTypeDescription. If you pass
the attribute 1D, it returns the attribute category as a String. Using the attribute 1D, you can use the
GetAttributeDataType method to find out the type of data required for the description of a particular attribute. This
method returns a number that corresponds to a member of the bbAttributeTypes enum. The GetAttributeDataType
method also accepts a boolean variable that is passed by reference, bUniqueRequirement. After the method is
called, the variable is set to True if this attribute type allows only one attribute of this type per record.

If the data type for the attribute is a table, you may need to get the code table ID for the table. With this, you use the
CodeTablesServer and TableLookupHandler to simplify your coding. When the GetAttributeCodeTablelD method
is passed to the attribute ID, it returns the code table ID for the table.

59

PROGRAMMING BASICS

The following code sample displays an attribute category label and a combo box or text box, depending on the
attribute type.

Private
Private

Private

Set

Set

End

End Sub

Option Explicit

moCodeTablesServer As CCodeTablesServer
moAttributeTypeServer As CAttributeTypeServer

Sub Form_Load()

IAttribute_ID As Long
bOnlyOneAllowed As Boolean

moCodeTablesServer = moFEService.CreateServiceObject(bbsoCodeTablesServer)

moCodeTablesServer. Init moFEAPI .SessionContext

moAttributeTypeServer = moFEService.CreateServiceObject(bbsoAttributeTypeServer)

moAttributeTypeServer.Init moFEAPI .SessionContext, bbGlobalAttributeType_GLAccount

With moAttributeTypeServer

IAttribute_ID = _GetAttributeTypelD(*'Budget Manager')
Labell.Caption = .GetAttributeTypeDescription(lAttribute_ID)

“bOnlyOneAllowed will now be True or False depending on iIf this
“"Attribute is allowed to be present more than once per record
Select Case .GetAttributeDataType(lAttribute ID, bOnlyOneAllowed)
"If the Data Type is Boolean than we add Yes and No to the Combo box
Case bbAttribute BOOLEAN
Combol.Visible = True
Combol.Addltem *Yes™
Combol.Addltem *No™

Case bbAttribute TABLEENTRY
Combol.Visible = True
"This uses the CodeTablesServer to the load the combo
"with all of the table entries
moCodeTablesServer.LoadCombo Combol,
.GetAttributeCodeTablelID(IAttribute ID), , True

Case Else
Textl.Visible = True

End Select

With

60

CHAPTER 2

Using Annotation Forms

In The Financial Edge, users can annotate any of the top-level data objects. An annotation is simply a note
attached to each record. The user can also select to have this note appear whenever that record is loaded. By using
the Annotation Form service object, you can easily add this functionality to your custom applications. Before you
can use the Annotation Form object, you must declare an object reference for the FE_Services object.

The following picture shows an annotation form.

Annotate

Current Annotation:

Main contact (Mary] iz on maternity leave until 574704,

Save

W Display annotation automatically

Cancel

Delete...

Copy

te Bk

Paste

1.

» Using the Annotation Form object

Declare an object reference for the FE_Services object. Then create a new instance of the FE_Services
object and use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialize it.

Declare an object reference for the CAnnotationForm object, then create a new instance of the
CAnnotationForm object.

Set the CAnnotationForm object equal to the FE_Services.CreateServiceObject method, passing the Enum
constant bbsoAnnotationForm.

Initialize the CAnnotationForm object using the Init method (remember to call the CloseDown method
when finished), passing a valid SessionContext.

To display the form, call the ShowAnnotationForm method, passing in the data object to which to attach
the annotation. If the data object that is passed does not support an annotation form, such as if it is not a
top-level object, a trappable error is raised. You can also pass the form over which the annotation form
appears. This parameter is optional and if nothing is passed, the form appears in the center of the screen.
The annotation form appears modally and allows the user all the options available in the program. After
you finish using any annotation forms in your project, call the CloseDown method to release all the
resources being used by this process.

@ You cannot save an edited annotation to the database until you call the Save method for the data
object.

61

PROGRAMMING BASICS

The following code sample illustrates creating an annotation form:

Dim FEService As FE_Services
Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

Dim oAnnotationForm As CAnnotationForm
Set oAnnotationForm = FEService.CreateServiceObject(bbsoAnnotationForm)
oAnnotationForm.Init FE_Application.SessionContext

Dim oProject As CGLProject
Set oProject = New CGLProject

oProject. Init FE_Application.SessionContext
oProject.LoadByField uf_Project ProjectlD, 6
oAnnotationForm.ShowAnnotationForm oProject, Me

"Any changes that the user made on the Annotation Form
"are not saved until this is called.
oProject.Save

“Clean up.
oAnnotationForm.CloseDown
Set oAnnotationForm = Nothing

oProject.CloseDown
Set oProject = Nothing

Using Notepad Forms

In The Financial Edge, you can use some top-level data objects to enter multiple notes for each record. These
notes are all added via a common form — the Notepad Form service object.

% Mew MNote

File Edit Motezs Format Toolz Help

ESaveandElnse-|n 'X|& ﬁ| H 4 » N||g'|@5pellingv ? -

M5 Sans Serf Flft =Bz u====

Date: M Title: [Status Change

Type: |Admini$tration j Authar: |Su|:uer\-'i$0r j

Description: |L|sage Change

2s of 01/01/2005, all contributions must be classified as non-spendable for 365 days]

Pressz FB o inzert time stamp

62

CHAPTER 2

» Using the Notepad Form object

1.

Declare an object reference for the FE_Services object. Then create a new instance of the FE_Services
object and use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialize it.

Declare an object reference for the CNotepadForm object, then create a new instance of the
CNotepadForm object.

Set the CNotepadForm object equal to the FE_Services.CreateServiceObject method, passing the enum
constant bbsoNotepadForm.

Initialize the CNotepadForm object using the Init method (remember to call the CloseDown method when
finished), passing a valid SessionContext.

Before you can use the Notepad Form object, set the NotepadObijects property to a valid collection. To
display an existing note, you can set the NotepadObjectID equal to the database ID of the note you want to
display. If this property is not set, a blank form appears and new note is created when the you save the
record.

Notepad Forms differ from other user interface forms in that you can select a form caption. Set the
FormCaption property equal to the string you want to appear, then when the form appears, the caption
reads “Notepad For” concatenated with the string you provided.

To display the Notepad Form, call the ShowForm method. When a user enters data on the form and selects
to save the notepad, the notepad information is not automatically saved to the database. To save it, call the
parent record’s Save method.

The following table lists parameters for the ShowForm method of CNotepadForm:

Parameter Variable Type |Description
oFormToCenterOn |Object This is the object over which the Notepad Form appears.
oMoveServer IBBMoveServer |Optional: This establishes how the “VVCR” buttons on the form function. Options are

explained in detail in the Programming Reference.

bOKCancel Boolean Optional: If set to True (False is the default), the only options under the File menu

are Save, Save and Close, Properties and Close.

bViewOnly Boolean Optional: If set to True (False is the default), the user can view notepad information

but not edit it.

PROGRAMMING BASICS

The following code sample illustrates creating a new notepad form.

63

Dim FEService As FE Services
Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

Dim oProject As CProject

Set oProject = New CGLProject

oProject.Init FE_Application.SessionContext
oProject.LoadByField uf _Project ProjectlID, 6

Dim oNotepadForm As CNotepadForm
Set oNotepadForm = FEService.CreateServiceObject(bbsoNotepadForm)
oNotepadForm.Init FE_Application.SessionContext

Set oNotepadForm.NotepadObjects = oProject.Notepads

“If this is not set, a new Notepad is created.
oNotepadForm._NotepadObjectID = oProject.Notepads. ltem(1).Fields(NOTEPAD_fld_Id)

"The caption on the form reads "Notepad for ' & ProjectDescription
oNotepadForm.FormCaption = oProject.Fields(GLPROJECTS_fld DESCRIPTION)

“In this case, the form will displayed modally, with all File menu
“options and allow the user to edit the Note.
oNotepadForm.ShowForm Me, True, True, , False, False

"The user®s changes are not added to the database until this called.
oProject.Save

“Clean Up!
oProject.CloseDown
Set oProject = Nothing

oNotepadForm.CloseDown
Set oNotepadForm = Nothing

64

CHAPTER 2

Using Media Forms

In The Financial Edge, you can use the Media tab of various records to store media files such as documents,
bitmaps (graphics), and video. With the Media Form object, you can incorporate that functionality into your
custom applications.

' Hew Media for Soccer [_ O] x|
File Edit “iew Media Help

ESaveandCln33v|u)(|I1 4 b H||?v ‘

Date: [12113/2003 Author:— [Mike =]

o IF'hotn j Title: ISnccer Team 2003

Descriptian: [T eam phioto for yearboaok, ;I

[-]

» Using the Media Form object

1. Declare an object reference for the FE_Services object. Then create a new instance of the FE_Services
object and use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialize it.

2. Declare an object reference for the CMediaForm object, then create a new instance of the CMediaForm
object.

3. Set the CMediaForm object equal to the FE_Services.CreateServiceObject method, passing the enum
constant bbsoMediaForm.

4. Initialize the CMediaForm object using the Init method (remember to call the CloseDown method when
finished), passing a valid SessionContext.

5. Set the CMediaForm.MediaObjects property equal to a valid collection of media objects, such as
CGLProject.Media.

6. At this point, the Media Form object is ready to be used. To display an existing media item, set the
MediaObjectID equal to the database ID of the media item you want to display. If this property is not set to
anything, a blank form appears and a new media item is created when the record is saved.

65

PROGRAMMING BASICS

7. One area where the Media Form differs from some of the other user interface forms is that you can select
the caption of the form when it is appears in the program. Set the NameForCaption property equal to the
string you want to appear. When the form appears, the caption is “Media For” concatenated with the string
you have passed.

Parameter Variable Type |Description

oFormToCenterOn |Object This is the object over which the Media Form appears.

oMoveServer IBBMoveServer |Optional: This establishes how the “VCR” buttons on the form function.
Options are explained in detail in the Programming Reference.

8. To display the Media Form, call the ShowForm method. When a user enters data into the form and selects
to save the media item, information is not automatically saved to the database. To save it, call the parent
record’s Save method.

Dim FEService As FE_Services
Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

Dim oProject As CGLProject

Set oProject = New CGLProject

oProject. Init FE_Application.SessionContext
oProject.LoadByField uf_Project ProjectlD, 6

Dim oMediaForm As CMediaForm
Set oMediaForm = FEService.CreateServiceObject(bbsoMediaForm)
oMediaForm.Init FE_Application.SessionContext

Set oMediaForm_MediaObjects = oProject.Media

“1f this is not set, then a new Media item will be created.
oMediaForm._MediaObjectlD = oProject._Media.ltem(1l).Fields(MEDIA_fld_ID)

"The caption on the form will read "Media for " & ProjectDescription
oMediaForm._.NameForCaption = oProject.Fields(GLPROJECTS_fId_DESCRIPTION)

“In this case, the form is displayed modally.
oMediaForm.ShowForm Me, True, True,

"The user®s changes are not added to the database until this is called.
oProject.Save

“Clean Up!
oProject.CloseDown
Set oProject = Nothing

oMediaForm.CloseDown
Set oMediaForm = Nothing

66

CHAPTER 2

Using Property Viewers

When using The Financial Edge, various statistics are maintained “behind the scenes”. For example, when you
create an account record, the date and the creator’s user name are stored in the database. To see this information,
from the menu bar, select File, Properties. The Account Properties screen appears, displaying properties of the
account record type. The fields shown on the property form vary depending on the record type. Using the Property
Viewer service object, you can display this form in your applications.

Project Properties I
Property | Walue I
Systemn recard ID 3
Date added 01f0arz00z
Last changed on nz/1gfz002
Added by Supervisor
Last changed by Supervisor
Import ID WiELASATIILL-3

» Using the Property Viewer object

1.

Declare an object reference for the FE_Services object. Then create a new instance of the FE_Services
object and use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialize it.

Declare an object reference for the IBBPropertyViewer object, then create a new instance of the
IBBPropertyViewer object.

Set the IBBPropertyViewer object equal to the FE_Services.CreateServiceObject method, passing the
enum constant bbsoPropertyViewer.

Initialize the IBBPropertyViewer object using the Init method (remember to call the CloseDown method
when finished), passing a valid SessionContext.

Display the properties form by calling the ShowForm method, passing the data object. You can also select
the form over which to center the Properties form.

67

PROGRAMMING BASICS

The following code sample displays creating a properties viewer form:

Dim FEService As FE_Services
Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

Dim oAccount As CGlAccount
Set oAccount = New CGIAccount

oAccount. Init FE_Application.SessionContext
oAccount.LoadByField uf_Account_AccountNumber, 6

Dim oPropertyViewer As IBBPropertyViewer
Set oPropertyViewer = FEService.CreateServiceObject(bbsoPropertyViewer)
oPropertyViewer.Init FE_Application.SessionContext

"This will display the properties for the account.
“If the object that you pass doesn"t

"support Properties, a trappable error is raised.
oPropertyViewer .ShowPropertyForm oAccount, Me

“Clean Up!
oAccount.CloseDown
Set oAccount= Nothing

oPropertyViewer.CloseDown
Set oPropertyViewer = Nothing

When you create the Property Viewer object, you can reuse it to display the Properties form for any type of
record. You may want to place the code that creates a new instance of the IBBPropertyViewer in your
Form_Load, so you can display the Properties form anywhere on your custom form.

68

CHAPTER 2

Using Search Screens

The search screen appears extensively throughout The Financial Edge. For example, to open a specific record or
select a query for a report, users access the search screen. Using the Search Screen object, you can incorporate this
functionality into your project. Search criteria and filters change automatically based on the type of record, and you
can add functionality for creating a new record.

Mopen g

Firnd: IPfDiECt j Search using querny: |<Default> ﬂlgg
&0 Open *i Add a Mew Project Options
Project I Project description Project skatus ActivelInactiv_*

§1|Z||:|1 Annabelle Johnson En... In Progress

CTM Enterprises Enda. .. In Progress Endowrment Bikive

Everett Grant In Progress Grant Ackive

Hugo Endowment In Progress Endowrment Bikive

L&M Grocery Endowm. .. In Progress Endowment Active

Lewis arant In Progress Grant Active _ILI
4

Fird Projects that meet theze criteria;

Project 10: I j A chive/|nactive: I j
Deszcription: I j Frerent posting date: I EI
Type: I j Last modified by: I j
Status: I j Lazt modified on: Iany tirne j
Start date: I EI

End date: I EI

| Hide Filtersz | Clear Filter$| Previous Filter$| Filters are not applied Find Mo | IWI Cancel

|14 records found.

» Using the Search Screen object

1. Declare an object reference for the FE_Services object. Then create a new instance of the FE_Services
object and use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialize it.

2. Declare an object reference for the IBBSearchScreen object, then create a new instance of the
IBBSearchScreen object.

3. Set the IBBSearchScreen object equal to the FE_Services.CreateServiceObject method, passing the Enum
constant bbsoSearchScreen.

4. Initialize the IBBSearchScreen object using the Init method (remember to call the CloseDown method
when finished), passing a valid SessionContext.

Because the search screen may be used multiple times in a single project, you may want to declare this as a
global- or module-level reference. You can call the Init when the form loads or when it is first used and
then call the CloseDown when the form unloads.

5. Before you display the search screen, you need to tell it the types of records you want to be available in the
Find field. Call the AddSearchType method to add at least one search type before displaying the form. To
have more than one type of record available, there are two syntax styles supported. If you have used the
object previously, you can call the ClearSearchTypes method to clear any existing search types.

69

PROGRAMMING BASICS

The following code samples show two methods for determining records to include in the search:

“Method 1
oSearchScreen._AddSearchType SEARCH_GLACCOUNT
oSearchScreen._AddSearchType SEARCH_GLACCOUNTCODE
oSearchScreen._AddSearchType SEARCH_GLPROJECT

“Method 2
oSearchScreen.AddSearchType SEARCH_GLACCOUNT ,SEARCH_GLACCOUNTCODE , SEARCH_GLPROJECT

Before you display the search screen form, you can set optional properties for the form. If you set the
AllowAddNew property to True, an Add New button appears on the form. You must write the code that
actually creates the new record. If you add multiple search types, you can set the DefaultSearchType
property to determine the search type to default to when the form appears.

To display the search screen, call the ShowSearchForm method. This displays the form modally and
returns False if the user clicks Cancel. When the user clicks any button that closes the form (Open,
Cancel, or Add New), the SelectedOption property returns the button the user selected. The Enum
bbSearchScreenOption lists options, simplifying your programming. If multiple search types exist, the
SelectedSearchType property determines the search type the user selected. This returns a value from the
Enum bbSearchTypes. The SelectedDataObject property returns a reference to the actual data object the

user selected.

CHAPTER 2

The following code sample illustrates adding a search screen:

Private Sub UsingTheSearchScreen()

Dim FEService As FE Services
Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

Dim oSearchScreen As IBBSearchScreen
Set oSearchScreen = FEService.CreateServiceObject(bbsoSearchScreen)
oSearchScreen. Init FE_Application.SessionContext

With oSearchScreen
-ClearSearchTypes
-AddSearchType SEARCH_GLACCOUNT, SEARCH_GLACCOUNTCODE, SEARCH_GLPROJECT
-DefaultSearchType = SEARCH_GLACCOUNT
-AllowAddNew = True

IT .ShowSearchForm Then
Select Case .SelectedSearchType

Case SEARCH_GLACCOUNT
Dim oAccount as CGLAccount

Dim oAccountForm As CGLAccountForm
Set oAccountForm= New CGLAccountForm
oAccountForm. Init FE_Application.SessionContext

IT oSearchScreen.SelectedOption = SRCH_FRM_OPEN Then
Set oAccount = oSearchScreen.SelectedDataObject
Else
Set oAccount = New CGLAccount
oAccount. Init FE_Application.SessionContext
End If

Set oAccountForm.AccountObject = oAccount
oAccountForm.ShowForm True, Me, True

oAccountForm.CloseDown
Set oAccountForm= Nothing
oAccount.CloseDown

Set oAccount = Nothing

Case SEARCH_GLACCOUNTCODE
"Same as above except substitute Account Code objects

Case SEARCH_GLProject
"Same as above except substitute Project objects
End Select
End If

End With

71

PROGRAMMING BASICS

(Continued- page 2 of 2)

“Clean Up!
oSearchScreen.CloseDown
Set oSearchScreen = Nothing

FEService.CloseDown
Set FEService = Nothing

End Sub

Using the Search Screen object properly in your custom applications not only simplifies coding but also
provides your users with a common interface for selecting records. Other methods and properties for this
form are explained in the Programming Reference section of the VBA and API help file.

Managing Transactions

In The Financial Edge object model, a number of collections exist that support the use of transactions. Any object
that implements IBBDataObject supports transactions. With transactions, you can add or remove any number of
items from a collection, or you can make temporary changes to fields in a data object until you can make those
changes permanent. At any point in a transaction, you can select to undo the changes you made. Three methods and
one property work together to provide transaction functionality.

The BeginCollectionTransaction (or BeginFieldsTransaction for data objects) method signals the collection or
object you want to begin a transaction at this point. If you later select to undo the changes, the collection or object
returns to this state.

Calling the CommitCollectionTransaction (or CommitFieldsTransaction for data objects) method tells the
collection or object you are finished with this transaction, and you want to save any changes made after the
BeginCollectionTransaction. However, this does not make any changes to the database itself — that happens only
after calling the parent record’s Save method.

To return the collection or object to the state it was in when you started the transaction, you can call the
RollbackCollectionTransaction (or RollbackFieldsTransaction for data objects) method. After calling this method,
the collection or object returns to the state it was in when the transaction began.

When using collections, you can use the InTransaction property to see if the collection is in the middle of a
transaction. This is important because, if you call CommitCollectionTransaction or RollbackCollectionTransaction
when there is no active transaction, an error is raised.

72

CHAPTER 2

The following sample illustrates removing contacts from a collection within a transaction.

Dim oProject As CGLProject
Set oProject = New CGLProject

oProject.Init FE_Application.SessionContext
oProject.LoadByField uf _Project ProjectlID, 3

Dim oContacts As CGLProjectContacts
Set oContacts = oProject.Contacts

oContacts.BeginCollectionTransaction
oContacts.Remove oContacts.ltem(1), False

"If we just removed the last Individual relation then Rollback.
IT¥ oContacts.Count = 0 Then
oContacts.Rol lbackCollectionTransaction
Else
oContacts.CommitCol lectionTransaction
End 1If

*Any changes to the collection are not saved to the database until now.

oProject.Save
Set oContacts = Nothing

oProject.CloseDown
Set oProject = Nothing

Blackbaud VBA

Contents
Working inthe VBA Environment. i, 74
Managing Active Objects. 77
Managing the FE_Application Object 77
UlOpening Event 77
UICIosing EVENt e 78
Managing Active Data Objects. i i 78
The BeforeOpen Event s 78
The BeforeSave Event 79
The AfterSave Event 80
The CloseRecord Event i 82
The BeforeDelete Event i 82
The AfterDelete Event 83
Managing Active Process Objects i 84
The Beforelmport Event 85
The BeforelmportRecord Event 85
The HandleException Event (Active Import) 86
The Afterlmport Event 87
The BeforeProcessEvent i 87
The AfterProcess Event 88
Managing VBA MaCros 89
Managing Active ObjeCt Macrost 91
Managing Standard Macrost 94
Managing Data ObjeCt MaCros.ot 94
Managing QUery MacroSottt 95
Macro Samples 97
Sample Data Object Macro: Setting Defaults 97
Sample Standard Macro: Adding Notepad Records 98
Sample Query Macro: ExportingtoExcel 100

o™
S
0
o
Q
©
L
O

74

CHAPTER 3

This chapter introduces using Visual Basic for Applications (VBA) in The Financial Edge. With the optional VBA
module, you can use macros to leverage the power of our software programmatically from within the program
shell.

@ The programming examples and related code provided in this document are the property of Blackbaud,
Inc., and you may not copy, distribute, convey, license, sublicense, or transfer any rights therein. All code
samples are subject to applicable copyright laws.

Working in the VBA Environment

Before you begin working with Visual Basic for Applications, you should understand that VBA is “hosted” by
The Financial Edge. VBA is not a standalone application, but rather is an optional module that fully integrates
with your Blackbaud software. Many other applications, such as Microsoft Excel and Word, also host their own
instances of VBA. While all these hosts share the common VBA-integrated development environment (IDE), each
exposes its own custom functionality and documents as project items. To access the VBA IDE, from the menu bar
of the program shell, select Tools, Visual Basic for Applications. The VBA IDE appears.

<@ Microzoft Visual Basic - FE_User - [FE_User_Macros [Code]]

% Fle Edt Miew Insert Fommat Debug Bun Tools Addin: Window Help -8 X
FE Code wizard _
HUDIECHSE N By X I(General} j I(I]eclarations} j

B .

-8 FE System

Eﬁ FE_User
£ Modules
f&é FE_User_Macros
[(] References

E=4 | _>IL‘

The integrated development environment, which runs in its own window, contains advanced debugging features,
property and code editing features (including compile time syntax checking), an enhanced object browser, and
code organization and tracking. These features make the VBA IDE a powerful platform from which to develop
code. Another useful feature of the Visual Basic for Applications environment is that it has the same look and feel
regardless of the VBA host application you use, so VBA has the same tools and layout as VBA in other
applications such as Word or Excel.

Like most other development environments, the VBA environment consists of a series of windows that perform
specific functions. In VBA, you use the Project Explorer, Code, Properties, and Forms Designer windows to build
your VBA applications.

75
BLACKBAUD VBA

The Project Window

The Project window, also known as the “Project Explorer”, organizes all VBA code stored within the program.

The Financial Edge has two default project items: System and User. The Project window appears automatically
when you first access VBA. You can also open it from the menu bar by selecting View, Project Explorer.
Project - FE_User]

2
El.;?ﬁ FE System
' =5 The Financial Edge Objects

-

5 Modules
ﬁ@é FE_Swstem_Macros
1§§ FE_Swstem_Object_Code
Egﬁ FE_User

=-E5 Modules
ﬁ@é FE_User_Macros
-5 References

“- @ Reference to FE System

The FE_System project holds references to active instances of objects in The Financial Edge, and it contains code
that executes for all users. This project is the place to build your custom business rules and functions. Only the
supervisor can edit code in the system project. The code executes for other users, but they cannot modify it.

76

CHAPTER 3

The FE_User project gives individual end users a project in which to save individual code and macros. Code stored
in the User project is available to a specific user. By isolating user projects, you can keep code organized and
prevent tampering with your important system code.

The Code Window

The code window is a text editor in which you view, edit, and debug code. To view a project’s code, in the Project
Explorer, select an element containing code. Then on the Project Explorer toolbar, click View Code. The code
appears.

I(General} j IA.RCharge_BefnreSaue j

'This procedure will be called each time & record of the specified type is closed g
Fublic Sub ARCharge CloseRecord()

End 3ub

'This procedure will khe called khefore & record of the specified type iz saved
Public 3ub ARCharge Before3ave (oRecord is Ohject, bCancel As Boolean)
'oRecord : repord object being saved
'hCancel : Zet to true to cancel the sawe operation

Dim oARCharge ALs CARCharge
On Error GoTo ErrHandler

Set oARCharge = oRecord

- — o

The Properties Window

A property is an attribute of an object, such as its color or caption. Using the Properties window, you set properties
to specify characteristics or the behavior of an object at design time. This window is useful when building custom
dialog boxes and forms using VBA’s forms designer. To access the Properties window, on the menu bar select
View, Properties Window.

|UserFurm1 UserFarm ;I

alphabetic Categnrizedl

E Appearance -
Ba lor & @ -
BorderColor B :H2000001 28
Borderatyle 0 - frmBorderstyleMone
Capkion UserFarml
ForeColor B :Hz000001 28
SpecialEffect 0 - fnSpecialEffectFlat

= Behavior
Cycle 0 - FrCycledlForms
Enabled True
Right ToLeft False
Showrodal True

El|Font
Fant Tahoma LI

77

BLACKBAUD VBA

The Forms Designer Window

VBA provides full-featured forms design support through the Forms Designer. After you create forms, you can call
them from VBA code you write to execute within The Financial Edge. For example, you can design a custom data
entry form that appears when an end user saves a project record. To access the Forms Designer, from the menu bar
select Insert, UserForm.

Controls I

 awga

WV i
o s #

Managing Active Objects

With Active Objects, you can respond to events within The Financial Edge. For example, you can build custom
business rules that are applied before the program can save or delete a record. There are three types of active
objects: the FE_Application object, which you can use to alter the program’s opening and closing procedures;
active data objects, which you can use to manipulate top-level objects such as invoices and accounts; and active
process objects, which control processes such as reports and imports.

Active objects are divided into three groups:

» The FE_Application object represents the application. Here you can write code that runs when a user opens or
closes the application. To cancel the close event, use the bCancel parameter.

 Data objects include all top-level objects. Examples include GLAccount, APVendor, ARPayment, FAAsset,
PYEmployee, and Banks. These objects all have events tied to opening, closing, saving, and deleting a record.

» Process objects include Activelmport, ActiveMail, and ActiveReport. These objects have events for starting and
ending a process. In addition, with Import you can interact with each record while it is validated.

Managing the FE_Application Object

The FE_Application object represents the overall program. It provides access to a valid SessionContext, which you
use to initialize Financial Edge objects. The FE_Application object also provides two events for which you can
write code. The UlOpening event fires as the shell opens and the UIClosing event fires as the shell is closed. The
FE_Application object also has one read-only property, Version, which returns the complete version and build
number of The Financial Edge. For information about accessing the SessionContext from VBA, see “Initializing
and Releasing Objects” on page 14.

UlOpening Event

Using the UIOpening event, you can execute code when a user begins a Financial Edge session. For example, you
can create a reminder that appears when a user logs in or connects to another application’s database to transfer data
between applications. The UlOpening event fires immediately after the shell appears on the screen, but before the
Home page appears.

78

CHAPTER 3

UIClosing Event

Using the UIClosing event, you can execute a section of code just before the program completely closes. It gives
you the chance to close down a connection to another application’s database or to ensure the user has correctly
completed a specific task. With the UIClosing event, you can also prevent the shell from closing by setting the
bCancel variable to True. This stops the program from closing and returns the user to the program shell.

Managing Active Data Objects

Active data objects, the most common objects, are provided for each top-level object. An active object’s name
begins with the module that contains that object. For example, the GLAccount object pertains to General Ledger.
The APInvoice object pertains to Accounts Payable. When creating macros, you can run the Code Wizard to select
an event. The Code Wizard then displays the object’s code so you can place your custom code in the object’s
events. When one of these events fires, the code you wrote for the event executes automatically. To view or edit
active data objects, you must have Supervisor rights in the program.

Using an active object’s events, you can:
» Notify users of required fields and prevent them from saving records without data in these fields.

» Prevent users from deleting records meeting certain criteria. For example, you could prevent deleting projects
with an active status.

» Maintain a separate database with information entered into or generated by The Financial Edge.

» Send email to specific individuals at your organization when certain conditions are met. For example, you can
notify all members of the accounting department when an account is marked inactive.

The BeforeOpen Event

The BeforeOpen event fires before the user interface form for a new or existing record appears. This gives you the
opportunity to perform any pre-processing to the underlying data object or to display instructions for your users.

The BeforeOpen event passes the following parameter:

» oRecord, an object representing the active object. The oRecord object is already initialized, so there is no need to
call the Init method or the CloseDown method at the end of your subroutine. Using the oRecord object, you can
set properties such as fields or you can use the object’s methods before the form appears to your user.

79

BLACKBAUD VBA

Insert the following code in the BeforeOpen event of the GLProject object. It notifies users they are editing an
inactive project.

Private Sub GLProject BeforeOpen(oRecord As Object)

Dim sMessage As String
Dim IResult As Long
Dim oProject As CGLProject

"Setting oProject = oRecord is not necessary
"but it activates IntelliSense for the object

Set oProject = oRecord

IT oProject_Fields(GLPROJECTS_fId_ACTIVEFLAG) = "lnactive - prevent data entry™ Then

sMessage = "Project " & oProject.Fields(GLPROJECTS_fld_PROJECTID)
sMessage = sMessage & ™ is currently marked inactive. Would you like to™
sMessage = sMessage & ' reactivate the project?"

IResult = MsgBox(sMessage, vbYesNo, "lnactive Project™)
IT IResult = vbYes Then
oProject.Fields(GLPROJECTS_FId_ACTIVEFLAG) = "Active"
End If
End If

Set oProject = Nothing

End Sub

The BeforeSave Event

The BeforeSave event fires before the program performs any Save operation (Save, Save and New, or Save and
Close). With this event, you can enforce any business rules specific to your organization.

The BeforeSave event passes the following parameters:

» oRecord, which represents the active object. The oRecord object is already initialized, so there is no need to call
the Init method or the CloseDown method at the end of the subroutine.

» bCancel that, if set to True, cancels the save operation and returns focus to the active form.

This example ensures that a project ID is a four-digit numeric value. You would place this code in the BeforeSave()
event of the Active_GLProject object.

80

CHAPTER 3

After the code runs, The Financial Edge still performs its usual validation to guarantee all required fields are
completed and date fields contain valid dates.

Private Sub GLProject BeforeSave(oRecord As Object, bCancel As Boolean)

Dim oProject As CGLProject
Dim 1ID “ProjectlID

"Setting oProject = oRecord is not necessary
"but it activates IntelliSense for the object
Set oProject = oRecord

11D = oProject.Fields(GLPROJECTS_fId_PROJECTID)

IT Len(1ID) = 4 Then
IT IsNumeric(lID) Then
Set oProject = Nothing
Exit Sub
Else
MsgBox **Project ID must be numeric™
bcancel = True
End If
Else
MsgBox '"Project ID must be a 4 digit number™
bcancel = True
End If

Set oProject = Nothing

End Sub

The AfterSave Event

The AfterSave event fires after data has been written to the database. In the following example, we use the
AfterSave event to determine if the saved project is a Scholarship type. If it is, Scholarship.mdb is updated,
assuming the record does not already exist. Also, the program sends an email to the controller to provide
information about the new scholarship entry. You would place this code in the AfterSave() event of the GLProject
object.

3% To access objects used in this email code sample, you must add a reference to the Microsoft Outlook Object
Library.

BLACKBAUD VBA

81

The event has one parameter, oRecord, representing the active data object. In this case, the oRecord is of type

CGLProject.

Private Sub GLProject AfterSave(oRecord As Object)

Dim oProject As CGLProject
Dim IProjectID As Long

Dim oMDB As Database
Dim oScholarshipFund As Recordset

"Setting the oProject = oRecord Is not necessary
"but it activates IntelliSense for the object
Set oProject = oRecord

"If this is a "scholarship® type project, proceed
IT oProject._Fields(GLPROJECTS_fId_TYPE) = *Scholarship®™ Then

IProjectlD = oProject._Fields(GLPROJECTS_fld_PROJECTID)

Set oMDB = OpenDatabase(*'c:\Scholarship.mdb)
Set oScholarshipFund = oMDB.Recordset(**ScholarshipFund')

With oScholarshipFund

-Index = “PrimaryKey""
-Seek =", IProjectlID

" .NoMatch will = True if the record is not found
"IT it is found then set objects = nothing and exit the subroutine
IT Not .NoMatch Then

Set oProject = Nothing

oScholarshipFund.Close
Set oScholarshipFund = Nothing

oMDB.Close
Set oMDB = Nothing

Exit Sub
End If

*If a match is not found, add the record

-AddNew

-Fields('DatabaselD™) = oProject.Fields(GLPROJECTS_ fld_GL7PROJECTSID)
-Fields('ProjectID™) = oProject.Fields(GLPROJECTS_fld_PROJECTID)
-Fields('ProjectDescription’) = oProject.Fields(GLPROJECTS_fld_DESCRIPTION)
-Update

-Close
Set oMDB = Nothing

End With

82

CHAPTER 3

(Continued- page 2 of 2)

"send the email message
Dim oOutlook As Outlook.Application
Set oOutlook = New Outlook.Application

Dim oMailltem As Mailltem
Set oMailltem = oOutlook.Createltem(olMailltem)

With oMailltem

-To = "Controller@YourOrganization.com"
-Subject = "New Scholarship Project™
-Body = "Project "™ & oProject.Fields(GLPROJECTS_fld_PROJECTID) & ™ - " & _

oProject.Fields(GLPROJECTS_ fld_DESCRIPTION) & ™ has been added to ' & _
"*the Scholarship database."
-Display
“Uncomment the following line if you want the email to be
"sent without user intervention. Comment ".display® above
*.Send
End With

Set oMailltem = Nothing
Set oOutlook = Nothing

MsgBox *'Scholarship database has been updated.*, vbOKOnly, "FE 7*

End If
End Sub

The CloseRecord Event

The CloseRecord event fires just before the active data object and user interface form closes. This gives you the
opportunity to close down any objects you may have opened when using this record.

If you need to update an external database, you may want to add connection information to the BeforeOpen event
and disconnection information to the CloseRecord event.

The BeforeDelete Event

The BeforeDelete event fires just before the active data object is deleted. Using the BeforeDelete event, you can
check any business rules specific to your organization and cancel the delete process if necessary.

The BeforeDelete event passes the following parameters:

» oRecord, which represents the active object. It is already initialized, so you do not need to call the Init method or
the CloseDown method at the end of the subroutines.

» bCancel that, if set to True, cancels the delete operation and returns focus to the active form.

83

BLACKBAUD VBA

In this example, we check the project record to ensure the End Date is not in the future. You would place this code
in the BeforeDelete event of the GL_ActiveProject record.

Private Sub FERecord_BeforeDelete(oRecord As Object, bcancel As Boolean)

Dim oProject As CGLProject
"blnvalid Date returns “true® if Project End Date is in the future

Dim bInvalidDate As Boolean

"Setting the oProject = oRecord Is not necessary
"but it activates IntelliSense for the object
Set oProject = oRecord

Select Case oproject.Fields(GLPROJECTS_fTId_ENDDATE)
Case Is > Date
bInvalidDate = True
Case Else
biInvalidDate = False
End Select

IT bInvalidDate Then
bcanel = (MsgBox(*'The Project End Date is in the future. " & _

“Would you like to delete the project anyway?', vbYesNo, "FE 7')=vbNo)
End If

Set oProject = Nothing

End Sub

The AfterDelete Event

The AfterDelete event fires after a record is deleted. The event passes both the Record ID and the Import ID from
the deleted record. Both of these fields are unique and provide a way to identify the deleted record.

84

CHAPTER 3

This example opens the Microsoft Access database named Scholarship.mdb and deletes a record if it exists. You
would place this code in the AfterDelete event of the GL_ActiveProject object.

Private Sub FERecord_ AfterDelete(lDatabaselD As Long, simportID As String)

Dim oMDB As Database
Dim oScholarshipFund As Recordset

Set oMDB = OpenDatabase(*'c:\Scholarship.mdb')
Set oScholarshipFund = oMDB.Recordset(**ScholarshipFund™)

With oScholarshipFund
-Index = "PrimaryKey"

.Seek "="", IDatabaselD

If Not _.NoMatch Then .Delete
End With

oScholarshipFund.Close
Set oScholarshipFund = Nothing

oMDB.Close
Set oMDB = Nothing

End Sub

Managing Active Process Objects

In addition to top-level data objects, in VBA you can access and control certain processes. Using service objects,
you have access to import, mail, post, and report processes. The specific events provided vary based on the process,
but in general they enable you to perform actions before and after the process and to handle exception processing.
Import objects such as Beforelmport are specific to Import, while process objects such as BeforeProcess are used
in both Reports and Mail.

VBA in Import provides four events so you can write code that executes during the importing process. With these
events, you can create custom exceptions that prevent unwanted records from entering the database, and you can
also specify custom exception messages displayed on reports. You can even change a record that was previously an
exception and instruct Import to retry the import.

The diagram shows the events and the order in which they fire.

|E1. Beforelmport |

| |E2. BeforelmportRecord (If bCancel is set to True then cancel the itport of this record and
— g6t the custom exception meszage to later be shown on the exception report.’

'

If there was an exception or bCancel was set to True in the BeforelmportFecord then

L E3. HandleFxception (If bEetry set to True, rebun to step EX)

h J J
Fd4. Afterlmport (A

85

BLACKBAUD VBA

The Beforelmport Event

The Beforelmport event fires once, just before the importing of the records to the database begins. You can start
any processes you would like to have in place while importing. For example, if you are also importing some of this
data into a separate database, you can use this event to connect to that database.

The Beforelmport event passes the following parameters:

» slmportName, a string representing the name of the import being processed.

 lImportType from the Enum bbImportTypes, which tell you the import type, such as Account or Project.
» bCancel which, if set to True, discontinues the importing process.

The following code sample opens two text files: one for storing the 1D and description of the imported records, the
other for records that are exceptions.

Public Sub ImportVBARecord_Beforelmport(ByVal slmportName As String, _
ByVal 1lmportType As FElnterfaces.bblmportTypes, _
ByRef bcancel As Variant)

"For project import files we need to provide a list of projects
"iImported and those that were exceptions. This routine opens the two text files
“that will hold the ID and description of the records processed.
IT IlmportType = bblmportType_ GL PROJECTS Then
IT MsgBox(*'Create import summary Ffiles?") = vbYes Then
* mlExcFile and mlImpFile are module level variables

" that hold the two file handles

mlExcFile = FreeFile
Open "C:\Exc_'" & slmportName & ".IMP" For Append As mlExcFile

mlImpFile = FreeFile
Open "C:\Imp_"" & slmportName & ".IMP" For Append As mllImpFile
End If
End If

End Sub

The BeforelmportRecord Event

The BeforelmportRecord event fires just before each row in an import file is imported into the database. You can
access the underlying data object after it is created but before it is added to the database. You may use this to send
some information to a separate database, or you can use it to verify whether specific business rules for your
organization have been met. If they have not been met, you can prevent the record from being imported into the
database.

The BeforelmportRecord event passes the following parameters:
» slmportName, a string representing the name of the import being processed.

* ImportType, from the Enum bbVBAImportTypes. This tells you the type of the import, such as Account or
Project.

» oDataObject; the type of this variant depends on the import type. You can fully access the entire object model for
the oDataObject type at this time. You can change information, use VBA to calculate and add numbers to the
record, or verify that all information meets your organization’s business rules.

86

CHAPTER 3

 bCancel, which if for some reason you do not want a particular record added to the database, you can set equal to
True. The record will not be added to the database and is listed as an exception on the Exception Report.

» sExceptionMessage, which you can set equal to the reason for the exception so it prints on the Exception Report
and tells your end-user what was wrong with this record. Any time a record is flagged as an exception, the
HandleException event fires.

The following code sample illustrates writing the IDs and descriptions of imported records to a text file.

Public Sub ImportVBARecord_BeforelmportRecord(ByVal slmportName As String, _
ByVal I1lmportType As FElnterfaces.bblmportTypes, _
oDataObject As Variant, _
ByRef bCancel As Variant, _
ByRef sExceptionMessage As Variant)

Dim oProject as CGLProject

"mlImpFile is a module level variable; a file handle
"for the imported records file
IT mlImpFile > 0 Then
Set oProject = oDataObject
Print #mllImpFile, oProject.Fields(GLPROJECTS fld_PROJECTID) & ™, " &
oProject.Fields(GLPROJECTS_fld_DESCRIPTION)
Set oProject = Nothing
End If

End Sub

The HandleException Event (Active Import)

The HandleException event fires whenever a record in an import is flagged as an exception. You can change the
record to fix the cause of the exception and try again or, if you transferred information for each record to an
external database in the BeforelmportRecord event, you may want to remove that information using this event.

The HandleException event passes the following parameters:
» slmportName is a string representing the name of the import being processed.
» |ExceptionCode tells you the reason for the exception, from the Enum bbimportExceptionCodes.

» oDataObject; the data type of this variant depends on the import type. You can access the entire object model for
the oDataObject at this time.

» bTryAgain, if set to True, causes the program to retry importing the updated record to the database. It is very
important that you make sure the cause of the exception has been fixed, so there is no possibility of the user
getting caught in a loop.

87

BLACKBAUD VBA

The following code sample illustrates writing the IDs and descriptions of exception records to a text file.

Public Sub ImportVBARecord_HandleException(ByVal slmportName As String, _
ByVal I1ExceptionCode As _
FEInterfaces.bblmportExceptionCodes, _
oDataObject As Variant,
ByRef bTryAgain As Variant)

Dim oProject As CGLProject

"mlExcFile is a modulle level variable; a file handle for the exception file
IT mlExcFile > O Then

Set oProject = oDataObject
Print #mlExcFile, oProject.Fields(GLPROJECTS_fld_PROJECTID) & ™, ™ &

oProject.Fields(GLPROJECTS_fId_DESCRIPTION)
Set oProject = Nothing
End If

End Sub

The Afterimport Event

The Afterimport event fires once after the entire import process is complete. You can clean up any objects or
connections to other databases you were using while the import was processing.

The Afterlmport event passes the following parameters:

» slmportName, a string representing the name of the import being processed.

» INumRecsImported, a long that represents the number of records added successfully.

» INumEXxceptions, a long that represents the number of records that caused exceptions.

The following code sample illustrates closing the text files and informing the user that the import files now exist.

Public Sub ImportVBARecord_AfterImport(ByVal slImportName As String, _
ByVal INumRecslmported As Long, _
ByVal INumExceptions As Long)

"mlExcFile is a modulle level variable; a file handle for the exception file
1T mlExcFile > O Then

Close mlExcFile

*mlImpFile is a module level variable; a file handle for the imported records file
Close mllImpFile

MsgBox *Import summary files created™
End If

End Sub

The BeforeProcess Event

Reports and Mail both support VBA “process” events. For example, the BeforeProcess event fires just before a
mail or report function begins to process. You can prevent the report or mail function from processing, and if you
are exporting information, you can specify that the name of the export file appear so you can start a word
processing merge or automatically graph the information in a spreadsheet.

The BeforeProcess event passes the following parameters:

88

CHAPTER 3

* IReportType/IMailType is a long that can be used with the Enum Ebbrep_ReportTypes to determine the type of
report or mail function being run, such as a General Ledger Report or Balance Sheet.

» sParamName is a string that is the name of the actual parameter file used for this report or mail function.

* lAction is a long that, when used with the Enum Ebbrep_ProcessOptions, tells you whether the user is printing,
print previewing, or exporting the report or mail function.

» bCancel, if set to True, cancels the entire process before it starts.

The following code sample limits users to running General Ledger reports only after 5:00 p.m., when all data entry
is complete for the day.

Private Sub ReportsVBARecord_BeforeProcess(ByVal IReportType As Long, _
ByVal sParamName As String, _
ByVal IAction As Long, _
bCancel As Boolean,
ByVal Reserved As Variant)
Select Case IReportType

Case bbrep_GL_GenerallLedgerReport
IT Time < #5:00:00 PM# Then
MsgBox *'This report can only be run after 5:00 pm.™
bCancel = True

End If

End Select

End Sub

The AfterProcess Event
The AfterProcess event fires after the mail or report function finishes processing and displays its output, if any.
The AfterProcess event passes the following parameters:

* |ReportType/IMailType, a long that can be used with the Enum Ebbrep_ReportTypes to determine the type of
report or mail function that has just run, such as the Balance Sheet or Income Statement.

» sParamName, a string that stores the name of the actual parameter file used for this report or mail function.

 lAction, a long that, when used with the Enum Ebbrep_ProcessOptions, tells you whether the user is printing,
print previewing, or exporting the report or mail function.

» sExportFileName, which, if the Action performed was exporting, contains the full path for the export file name.

89

BLACKBAUD VBA

The following code sample sends an email copy of Today’s Reports to the controller after importing, using the
Microsoft Outlook Object Library.

Private Sub ReportsVBARecord AfterProcess(ByVal IReportType As Long, _
ByVal sParamName As String, _
ByVal lIAction As Long, _
ByVal sExportinfo As String, _
ByVal Reserved As Variant)

On Error GoTo ehSendReport

*You will need to set a reference to Microsoft Outlook 9.x Object Library
Dim oOutlook As Outlook.Application “This starts Outlook.
Dim oMailltem As Mailltem

*"If the user is printing the "Today"s Reports® then
IT sParamName = "Today"s Reports'™ Then IFf

Len(sExportinfo) > 0 Then
"Create the objects needed for email
Set oOutlook = New Outlook.Application
Set oMailltem = oOutlook.Createltem(olMailltem)

With oMailltem
-To = "Controller@YourOrganization.com
-Subject = sParamName
-Attachments.Add (sExportinfo)
-Send
End With

"Close all object references
Set oMailltem = Nothing
Set oOutlook = Nothing
End If
End IFf
Exit Sub
ehSendReport:

MsgBox Err.Description, vbOKOnly

End Sub

Managing VBA Macros

You can automate task that you perform regularly with macros. A macro is a series of steps stored in a VBA
module or VBA *.dll file you can run when you need to perform the task. You can create and edit macros directly
through the program’s shell, or you can use a separate program, FE7VBA.exe. The process of creating macros
through either means is similar, but each method has its own advantages. For our purposes, macros created through

the program’s shell are referred to as VBA Macros, while those created through the FE7VBA.exe program are
referred to as VBA DLL Macros.

90

CHAPTER 3

With VBA, you can create four different types of macros.

Active Object Macros. With Active Object macros, you can control top-level objects or processes at key points
in their lifetime. Standard events occur for each data object as it is loaded, saved, closed, and deleted. Other
events fire at the beginning and end of certain processes. You can write code inside these events to act on a
given data object, to enforce custom business rules, or to prevent processes from occurring under specified
conditions.

Standard Macros. With Standard macros, you can perform specific functions from the program shell. For
example, you can write a macro that automates the printing of a set of End of Day, End of Month, or End of
Year reports. You first create the reports for each group and then create the macro to automate the printing
process. Your users can select the macro and run all the reports with the click of a button.

Data Object Macros. With Data Object macros, you can run a set of instructions for the data object you are
currently using. All top-level objects and some commonly-used forms have the option to run data object
macros. When you run a macro, VBA is called with a data object representing the current record so you can
manipulate that record and navigate its object model. You can use Data Object macros to give your users a
quick summary of project balances, displaying the information in your custom format.

Query and Export Macros. Query macros provide access to each result row as you process a query. With
special VBA user fields, you can modify the query results. For example, you can include a VBA user field that
is the sum of two other fields in your query.

Tips for Debugging and Running Macros

Because VBA is integrated into the program’s shell, you can debug macros while the application is running,
regardless of the macro type. You can place breakpoints into the macro code and use all the standard debugging
tools provided with the VBA IDE. For specific information about using VBA debugging tools, see the VBA help
file accessible from the IDE.

Although you can debug all macro types the same way, you must run each using a different method. After you
write an active object macro, it runs automatically when a user takes the action that fires the macro. On the other
hand, users must manually run standard macros from the menu bar in The Financial Edge shell. To run a standard
macro, on the Financial Edge menu bar, select Tools, Run Macro. The Macros screen appears.

Macros. [] I
Macro name:

lu}

Cancel

Step Inta

Edit

[Ereate

Delete

il Bl

Macrosin: |FE_User

Kl

D ezcrphion:

S

91

BLACKBAUD VBA

Then, select a macro and click Run. To run a query macro, you must manually add the macro as a query option. To
run a query macro from an open query, on the menu bar, select Tools, Query Options. The Query Options screen

appears.

Query Options I
Deszcription:
[~
[~
— Properties Sppl eutEu limits

Query type: I.f-‘«cc:nunt "l) Fandom sampling =) Limit be bop e
[uery format: ID_l,-namic: "'I Lirnit h:ul INumber j
VEA Macro: I j

Select frof
I Selectfro FE_User_Macros. SendduenBesultsToE xcel
[v Other users may mn s querny

[Other users may modify this quens

™ Suppress duplicate rows

Ok I Cancel

In the VBA Macro field, select the query macro and click OK. When you run the query, the macro fires once for
each row in the result set, again when the process begins, and once more when the process ends.

Managing Active Object Macros

Active object macros execute during certain events in the life cycle of an object or process. For example, you can
enter code that executes before accounts are saved. Then, if an account does not meet custom business
requirements you specify, you can cancel the save event. The available events vary based on the type of object
selected. For more information about specific objects, see “Managing Active Objects” on page 77.

92

CHAPTER 3

To create active object macros from the VBA IDE, on the toolbar, click FE Code Wizard. The Financial Edge
Code Wizard screen appears.

@ Only the Supervisor can create Active Object Macros.

The Financial Edge Code Wizard B

For each item checked below a procedure prototype will be added to the active code madule.
These procedures will be called from the The Financial Edge at the times indicated in the
procedure comments, giving you an opportunity to customize the behavior of the application.

T -
+ [T APCreditM emo
+ [APlnvoice
+ [APPurchaseOrder
+ [~ APReceipt
+ [APRecurringlnvoice
+ [APYendor
+ [ARRBillingltem
+ [T ARCharge
+ [ARClient
+ [ARCredit
+ [T ARDeposit
+ [ARInvoice
+ [T ARRecurringlnvoice
=

O AN L.

Events associated with opening, saving, and deleting Adjustment
records

] I Cancel |

The code wizard simplifies the process of creating active object macros. After you select a set of events you want
the macro to respond to, the code wizard generates code that includes useful comments and error checking. For
example, you can enforce a rule requiring Project codes that are four digits long.

» Creating a custom project business rule
1. From the IDE, click FE Code Wizard. The Financial Edge Code Wizard screen appears.
2. From the treeview, mark GLProject.
3. Expand the selections under GLProject and mark GLProject_BeforeSave.

93

BLACKBAUD VBA

4. Unmark all other project checkboxes and click OK. The GLProject_BeforeSave code appears in the code
window.

I(General} j IGLPrujec‘t_BefureSaue j

'This procedure will be called before a record of the specified type is saved [
Public 3ub GLProject BeforeSave (oRecord is Object, bCancel As Boolean) I—
'oRecord : record obhiject heing saved
'hCancel i et to true to cancel the sawe operation

Dim oGLProject As CGLProject
on Error GoTo ErrHandler
Set oGLProject = oRecord
If Mot oGLProject Is Nothing Then
'BCancel = < place your custom save criteria here >
End If
Set oGLProject = MNothing

on Error GoTo O

Exit Zub

ErrHandler:
Dim =sErr A= String
sErr = Err.Description
On Error GoTo O
'« place your custom error handling code here >
M=sgBox "Error processing GLProject Eeforelave @ " & SErr

T o

In the code, the green code comments explain parameters that are available. oRecord is the project record
the user is saving. Even though the record has not been stored in the database, the oRecord object contains
all information defined for the unsaved record. oGLProject is the class that manages projects in

The Financial Edge. After you set oGLProject to oRecord, you can use Intellisense. For more information

about Intellisense, see “Using the Type Library” on page 6.

With the bCancel parameter, you can cancel the save event by adding the following code after the If
statement:

IT Len(oGLProject.Fields(GLPROJECTS_fld_PROJECTID)) <> 4 Then
MsgBox *"Project ID must be four digits™
bCancel = True

End If

5. After you add your code, save the macro and return to The Financial Edge.

To test the macro, enter a project with a five-digit Project ID. A message appears and the save event is
canceled.

For information about debugging and running macros, see “Managing VBA Macros” on page 89.

94

CHAPTER 3

Managing Standard Macros

A standard macro is a block of code you can execute from anywhere in The Financial Edge shell. Creating macros
for end users opens the door to a wide range of options that simplify their work and increase efficiency.

To create standard macros from the IDE, in the Project Explorer, select the System or User project. Under the
System project is a System_Macros module, and under the User project is a User_Macros module. You can place
your macros into these modules or add additional modules as needed.

Project - FE_User E

B :

Eﬁ FE System

{3 The Financial Edge Objects
: FE_application
225 Modules

f&é FE_Swskern_Macros

L FE_Swstem_object_Code
E;ﬁ FE_User
E-E5 Modules
FE_User_Macras
[(7 References

@ You can create macros in the System_Macros module in the System project only when you are logged into
the accounting system as Supervisor. These macros are available to all users. However, within your macro
code you can access the current user name and limit who can actually run the macro. Macros written in the
User_Macros module in the User project are available only to the user who created them.

After you access a project module, create a public subroutine in the System_Macros or User_Macros module.
Standard macros cannot have any parameters. Keep in mind the name of your macro is displayed to your users, so

the name should clearly define the macro’s purpose.

#% FE_User - FE_User_Macros [Code]
I(General} j IRunEndOf‘n"earRepnrts j

Option Explicit

Fublic Sub RunEndofYearReports()

End Sub

S=. | _'I%f

Managing Data Object Macros

With data object macros, you can run a set of instructions using the data object with which you are currently
working. All top-level objects and some other commonly-used forms, such as Notepad and Address, have the
option to run a macro using the underlying data object. When the macro is run, VBA is called with the live data
object representing the current record, so you can navigate its entire object model. Through data object macros, you
can write a calculation to fill in a data field, automatically add a list of attributes to an account, or fill in default

values for a record based on user input.

95

BLACKBAUD VBA

To create data object macros from the IDE, open the Project Explorer. The Project Explorer has two projects —
System and User. Under the System project is a System_Macros module, and under the User project is a
User_Macros module. You must place your macros into these modules for them to be recognized by

The Financial Edge as Data Object macros. You can add additional modules as needed to provide support for your
System or User macros.

Project - FE_User E

B S

E-&% FE System
E@ The Financial Edge Objects
i FE_application
=5 Madules
ﬁi FE_Swstern_Macros
«ﬁg FE_Swstem_Object_Code
Elﬁ FE_User
=127 Modules
FE_User_Macros
-7 References

@ You can create macros in the System_Macros module in the System project only when you are logged into
the accounting system as Supervisor. These macros are available to all users. However, within your macro
code you can access the current user name and limit who can actually run the macro. Macros written in the
User_Macros module in the User project are available only to the user who created them.

After you access a project module, create a public subroutine in the System_Macros or User_Macros module. Data
Object macros must have one parameter of the IBBDataObject type. Without this parameter, the program will not
recognize your macro as a Data Object macro.

-"1':.;- FE System - FE_System_Macros [Code]
I[General} j |nddnefaunnttrihmes j

Option Explicit il

Fuhlic Sub AddDefaultittributes (oRec A= IBEDataChject)

If TypeQf oRec Is CGlAccount Then
"Add default account attributes

ElzeIf Typelf oRec I=s CGLFProject Then
'Add default project acttributes

End If
End Sub
o
== | 1)

Data Object macros are available from any data object supporting a data object macro. For example, even though a
macro is designed for the project data object, it will still be available when the user looks at the macro list from an
account record. Therefore, you need to make sure that the data object being passed in is of the correct type for that
particular macro. For a code sample that shows you how to check the data type of a passed-in data object, see
“Sample Data Object Macro: Setting Defaults” on page 97.

Managing Query Macros

Using Query macros, you can detect the start and end of the query process and modify the results through the VBA
User fields. Once written, the macros are attached to the query.

96

CHAPTER 3

To create query macros from the IDE, in the Project Explorer, select the System or User. Under the System project
is a System_Macros module, and under the User project is a User_Macros module. Query macros must be written
in one of these modules to be recognized.

After you access a project module, create a public subroutine in the System_Macros or User_Macros module.
Query macros must have one parameter, IBBQueryRow. Without this parameter, the program does not recognize
your macro as a query macro.

-'f:_;— FE Syztem - FE_System_Macros [Code])

I(General} j IManipuIateResuIts j
FPublic 3ub ManipulateResults (oFRow A= IEEQueryRow) -
'hdd query code here
End Zub
b
Al A7

Using the VBA User Field

In Query, one VBA User Field appears in the Available Fields list for each query type. If you select this field as
an output field, you can use it as a read/write field and can manipulate it with a VBA Macro. This is the only field
in the query results to which the user has write access during query processing. Query does not put anything in this
field — for this field to be populated or used, you must use a VBA Macro. Note that the VBA User Field appears
only in the Available Fields list once per query type. However, you can select it more than once and follow
standard naming conventions to define additional user fields in a query.

The following query macro shows an example using BOF, EOF, and the VBA User Field to analyze expense
accounts and compare each account’s activity to its corresponding budget by calculating a difference in the VBA
User Field. The one parameter for the macro must be of the IBBQueryRow type. The query includes the Account
Number, Net Activity, Annual Budget, and VBA User Field output fields.

Public Sub UserQueryMacro(oQueryRow As IBBQueryRow)
Const ACCOUNT_NUMBER = 1
Const NET_ACTIVITY = 2

Const ANNUAL_BUDGET = 3

Const VBA FIELD = 4

IT oQueryRow.BOF Then
"This code is processed once (at the beginning of
"the query result set).
MsgBox '‘Begin processing'
Elself oQueryRow.EOF Then
"This code is processed once (at the end of the
"query result set).
MsgBox "End processing"’
Else
"This code is processed once per row
"You can only write to a "VBA User field"
oQueryRow.Field(VBA_FIELD) = ANNUAL_BUDGET - NET_ACTIVITY
End IFf

End Sub

When you run the query:
1. A “Begin processing” message appears. To continue processing the query, click OK.

97

BLACKBAUD VBA

2. For each row, the net activity of the account is subtracted from the budget to generate the difference in the
VBA User Field.

3. An “End processing” message appears. To close the message, click OK.

Note that when viewing the query results in the Results window, the EOF is not triggered unless the user scrolls
to the end of the result set or closes the query. To run the macro, from a query, select Tools, Run Macro.

Macro Samples

This section contains three sample macros that demonstrate the basic concepts of writing macros. The first,
“Setting Defaults”, is a data object macro that sets a default start date for project records. The second, “Adding
Notepad Records”, is a standard macro that uses several VBA objects and features to prompt users for an account
and display a Notepad user interface for adding notepad records. The third example, “Exporting to Excel”, is a
query macro that exports query results to Excel. For more code samples, see “Sample Programs” on page 123.

Sample Data Object Macro: Setting Defaults

This is a simple macro for adding default information to project records, but you can easily adapt this code for any
record type. It demonstrates two important ideas. First, the data object macro is available from several different
data entry forms, so it is important to check the data object type before using any of its properties. Second, you
have access to the data object and all its child collections and classes, so that you can add, edit, and delete
information when necessary.

Public Sub SetDefaults(oRecord As IBBDataObject)

"Check the record type
IT TypeOFf oRecord Is CGLProject Then

Dim oProject As CGLProject

"Setting the oProject = oRecord is not necessary

"but it activates IntelliSense for the object

Set oProject = oRecord

oProject.Fields(GLPROJECTS_fld_STARTDATE) = FormatDateTime(Now, vbShortDate)
Elself TypeOf oRec Is CGIAccount Then

"Add default account information

End If

End Sub

98

CHAPTER 3

Sample Standard Macro: Adding Notepad Records

This sample uses many VBA features. With this macro, users can add notepads to an account without first loading
the account.

Public Sub Add_Notepad()
Dim 1ID As Long

Dim oAccount as CGLAccount
Dim FEService as FE Services

Dim oQuickSearch As IBBMiscUI
Dim oNotepadForm As CNotepadForm

Set FEService = New FE_Services
FEService.Init FE_Application.SessionContext

"Search for the account using the Quick Search form
Set oQuickSearch = FEService.CreateServiceObject(bbsoMiscUl)
oQuickSearch.Init FE_Application.SessionContext

11D = oQuickSearch.PromptForDataObject(SEARCH_GLACCOUNT, _
"Account™,
"*Search for an account')

*"If an account is found, then open a notepad form
If 1ID > 0 Then

Set oAccount = New CGLAccount
oAccount. Init FEApplication.SessionContext

Set oNotepadForm = New CNotepadForm
oNotepadForm. Init FEApplication.SessionContext

oAccount.Load 11D

With oNotepadForm
Set .NotepadObjects = oAccount.Notepads
-ShowForm Nothing, , True, False

End With

OAccount. Save
Else

MsgBox **Account not found™
End IFf

"Clean up

IT Not oAccount Is Nothing Then
oAccount.CloseDown
Set oAccount = Nothing

End If

(Continued- page 2 of 2)

BLACKBAUD VBA

99

IT Not oNotepadForm Is Nothing Then
oNotepadForm.CloseDown
Set oNotepadForm = Nothing

End If

oQuickSearch.CloseDown
Set oQuickSearch = Nothing

FEService.CloseDown
Set FEService = Nothing

End Sub

100

CHAPTER 3

Sample Query Macro: Exporting to Excel

For additional properties you may find helpful when moving through query results, see IBBQueryRow in the
Object Reference section of the VBA and API help file.

"This sample requires a reference to Excel Object Library.
Option Explicit

Private moExcel As Excel.Application
Private moWorksheet As Excel.Worksheet

Public Sub SendQueryResultsToExcel (oRow As IBBQueryRow)

IT oRow.BOF Then
"Opens Excel
Set moExcel = Excel .Application
moExcel .Visible = True

"Add a new worksheet
moExcel .Workbooks . Add
Set moWorksheet = moExcel .Worksheets(1l) " .Add

"Fills the first row with the field names from the query

Dim IHeads As Long

For IHeads = 1 To oRow.FieldCount - 1
moWorksheet.Cells(1, IHeads) = oRow.FieldName(lHeads)

Next IHeads

Elself oRow.EOF Then
" Post-process some results in Excel
moWorksheet._Columns(**A:E"™) .EntireColumn.AutoFit

"Clean up
Set moWorksheet = Nothing
Set moExcel = Nothing

Else

" Fill In The Details
Dim I As Long
For 1 = 1 To oRow.FieldCount - 1
"Uses the data from the query to move to Excel
moWorksheet.Cells(oRow.RowNum + 1, 1) = oRow.Field(l)
Next 1

End If

Blackbaud API

Contents
Workingwiththe APL 102
API Code ConVentionS. vv et 102
Accessingthe APL. e 102
APland VB.INET 104
Managing the FE_API Object......... 105
The SessionContext Property 105
The AppMode Property 105
The GetAvailableRegistryKeys Method. 105
The LastErrorMessage Property. 106
The QueryShutDown Method. 107
The SignOutOnTerminate Property, 107
Managing the FE_ServicesObject, 107
The CreateServiceObject Method. 107
The GetProgID Methods. 108
Managing Plug-Ins 108
Creating Plug-Inso 111
Deploying Plug-Ins.o 113
Managing APl Applications. i 114
Sample: Adding an Annotation Form. i 114
Sample: Managing Code Tables. i 114
Using bbsoCodeTableServer 115
Using bbsoTableLookupServer i, 116
Sample: Using Gridsand Controls. 117
Sample: Listing Records. 117
Sample: Managing Mediaand Notepads 118
Sample: Printing RePOItSt 120
Sample: Using the Search Screen. 121

<t
D
)
Q.
®©
e
O

102

CHAPTER 4

This chapter introduces API. With this optional module, you can leverage the power of The Financial Edge
programmatically from third party or custom applications. You can use any program that can manipulate Visual
Basic COM objects to write stand-alone applications for API. You can also integrate programs that support VBA,
such as Microsoft Office, with The Financial Edge. For example, you can use Financial Edge account activity to
produce pivot tables or graphs in Microsoft Excel. To speed code entry, you can reuse many of the native data entry
forms and search screens in your API application.

To customize your software, you can “extend” the Financial Edge shell by building plug-ins or add-ins your users
can run while they are in the program. For example, you can create a plug-in to run several queries, export the data
to Microsoft Excel, and produce reports that include charts and graphs. Or you can create a plug-in with a data
entry form for adding information to the database in a custom format. After you create a plug-in, you can add it to
the Plug-Ins page of the program shell to access it quickly. To access plug-ins from the Plug-Ins page, on the
navigation bar, click Plug-Ins, then click the link for the plug-in you want to run.

To further improve accessibility to your accounting data, you can use API to access your data through the Internet
using tools available in Microsoft’s Internet Explorer. The Windows Scripting Host provided with the Windows
32-bit operating systems enables you to use scripts that are similar to batch files to access your data.

Working with the API

To successfully integrate API applications with The Financial Edge, you should include three critical features in
your programming. The first is a reference to Financial Edge type libraries so you can gain early-bound access to
Financial Edge objects. Second, you should follow proper declaration, startup, terminate, and closedown methods.
Finally, to create a successful integration, you must successfully access the program database. The following
sections explain common API code conventions and methods. For procedures on referencing Financial Edge type
libraries, see “Using the Type Library” on page 6.

APl Code Conventions

To connect with The Financial Edge through the API, you must follow certain code conventions in your
applications. For example, in the declarations section of your project, you must create a global object reference to
the FE_API object. This reference should be global because it is created and initialized only once when you start
the program. You can then use the object in various places throughout the program to manipulate other objects, but
you should destroy the object when the program terminates to prevent memory leaks.

For brevity, common code segments such as the declaration, startup, terminate, and closedown statements are
omitted in later code samples in this chapter, however, your applications cannot function without them.

The following code samples illustrate declaration, startup, terminate, and closedown methods in API:

“Place this in the declarations section of your program

Public goFE_API as FE_API

"Place this in the startup section of your program

Set goFE_API = New FE_API

"This forces an "Exit and Sign Out® when your goFE_API object is destroyed
goFE_API.SignOutOnTerminate = True

“"Place this in the closedown section of your program

Set goFE_API = Nothing

Accessing the API

Regardless of the method you use to access The Financial Edge, to access the API, you must call the FE_APL.Init
method just after the application startup. The FE_API.Init method requires that you provide up to four pieces of
information to establish a connection to the database, depending on the method you use. This information includes:

» User Name. You assign user names through the Set up system security link in Administration.

103

BLAcCKkBAUD API

 Password. You can assign passwords to new users.

» Database Number. If you have multiple databases installed, each has an assigned database number. For
example, the Financial Edge sample database is assigned number 50.

 Serial Number. You must always supply the serial number, or at least the serial number parameter using
double quotation marks (*“). The other three parameters are optional when calling the FE_API.Init method.

You can use one of three methods to connect to a Financial Edge database, unless you are a member of the
Blackbaud Developer Network (BDN) for third party vendors. If you are a member of the BDN, you must use
Option 4, which involves passing the serial number and sThirdParty arguments you received from Blackbaud when
you purchased API.

Option 1: Using the Financial Edge Login Form

The easiest method for connecting to The Financial Edge is to use the standard login screen and specify only the
database serial number.

bLoginOK = goFE_API. Init(SERIAL_NUMBER)

In this case, because you do not identify a specific database number, the initialization code determines whether you
have multiple databases installed. If so, a screen appears asking you to select a database:

EDGE

You have multiple Financial Edge databases installed. Please
select the database to use for this session:

o EBlank Database
+ The Financial Edge Sample Databasze™

After the user selects a database, or if only one database is installed, the program asks for a user name and
password if you did not specify one. To completely bypass the login screen, you can add all three parameters to the
login code.

==
=

Lser Mame: |5upervisor

Password: I

v I

104

CHAPTER 4

Option 2: Bypassing the Login Form

If you have all required information, you can connect directly to a Financial Edge database and bypass the login
forms. In this case, assuming all information is valid, you connect directly to the database without having to enter
information on additional screens. This method is not ideal because it makes the user password accessible to
anyone with access to your program code. However, it may be useful in cases where you need an application to
connect to the database without user input. For example, you may want an employee to launch an application
before leaving work, so the program can extract information from the database at night. Using this method, you can
permit anyone to run the application with supervisor rights, without giving out your password.

bLoginOK = goFE_API_Init(""", "Supervisor™, "Admin*, 50)

Option 3: Creating A Custom Login Form

This option is essentially the same as Option 2, but you create a custom user interface that asks users to select a
database and provide their user name and password. The FE_API object provides the GetAvailableRegistryKeys
method, which returns a list of the registry keys for each Financial Edge database you have installed. With this
information, you can extract additional information from the registry, including the database description, the DSN,
and the System Directory, where Financial Edge program files are located.

bLoginOK = goFE_API_Init(""", sUserName, sPassword, IDatabaseNumber)

Option 4: Accessing The Financial Edge for Third Party Vendors

Third party vendors must always include the SerialNumber and sThirdPartyVVendor arguments supplied by
Blackbaud at time of purchase.

APl and VB.NET

Coding API applications in VB.NET requires special consideration. When using API with VB.NET, you should:

1. Remember to reference the API. To make a reference to the API, from the menu bar, select Project, Add
Reference. On the COM tab, select Blackbaud FE7.0 Objects, then click OK.

2. Load a project form before loading other forms. This means The Financial Edge splash screen or login
form should not appear before one of the project forms. Because of this restriction, you should not put the
code to initialize the API in the Load event of your form. Instead, use one of the following methods:

 Display a splash screen first and write the code to initialize the API in the Load event of the main form.

o Start a timer with a small time interval in the Load event of your form. Initialize the API only when the
timer goes off.

* Run The Financial Edge as the server by specifying the optional parameter IAppmode in the
initialization. You must correctly specify all parameters to run API in this mode.

3. Intellisense for The Financial Edge works in VB.NET. In cases where it does not work, remember that
Enum members should be preceded by the name of the Enum. For example, in Visual Basic 6.0, to set the
description field of an object oProject of type CGLProject, you would use the following code:

oProject.Fields(GLPROJECTS_FId_DESCRIPTION) = "This is just a demo"

In VB.NET, you should use this code:

oProject.Fields(EGLPROJECTSFields.GLPROJECTS fld_DESCRIPTION) = "This is just a demo"

105

BLAcCKkBAUD API

Some functions of API, such as the LoadProductCombo of the IBBUtilityCode, are specific to Visual Basic 6.0.
This function takes a ComboBox argument and loads the product names into it. This and similar functions do not
work in VB.NET, so you must write your own functions to do the work. For more details, see the LoadCombo
function in the .NET Sample.

@ For a code sample for creating a CGLProject with VB.NET, see the CProjectSetup.cls file in the
Help\Samples\Advanced_Samples\API\Samples\GL folder of the installation directory.

Managing the FE_API Object

The FE_API object represents the entire Financial Edge program in API, and it provides access to a valid
SessionContext for initializing objects. It is important that you maintain a reference to the FE_API object
throughout the lifetime of your API program because, when this object is released, your connection to the
accounting system is closed. For introductory information about the SessionContext for API, see “Initializing and
Releasing Objects” on page 14.

The SessionContext Property

The SessionContext is the most popular method used in The Financial Edge, although it is not used during the
initial log in. The SessionContext holds information about the state of the active instance of the application, and it
is required to initialize all other objects in the system. Each time you create a top-level object, it must be initialized
with a valid SessionContext.

This code sample shows how to initialize an account object.

"Create a new Account object and initialize it with our current SessionContext
Set oAccount = New CGLAccount
oAccount. Init moFE_API.SessionContext

The AppMode Property

AppMode is a read-only property used to determine whether the application is running standalone or as part of a
server, such as a Web server.

"Are we running standalone?

1T moFE_API .AppMode = amStandalone Then
"Do standalone code

Else
"Do server code

End If

The GetAvailableRegistryKeys Method

The GetAvailableRegistryKeys method returns an array containing the registry key root for each installed
Financial Edge database. If you have multiple Financial Edge databases installed with APl support, you can use
this method to present users with a list of available databases. The FE_API object does not have to be initialized to
access this method.

"Check the registry root of the first installed Financial Edge database
Debug.-Print moFE_API .GetAvailableRegistryKeys(1)

106

CHAPTER 4

The following code illustrates using the GetAvailableRegistryKeys method to populate a combo box with a list of
available Financial Edge databases:

"Enter "Private moFE_API as FE_API" in the general declarations section
Private Sub UserForm_Initialize()

Dim ICntr As Long
Dim vDatabases As Variant

"Create an instance of the Financial Edge API
Set moFE_API = New FE_API

"Get a list of available FE databases
vDatabases = moFE_API .GetAvai lableRegistryKeys

"Load a combo with the available choices
With cboDatabases
.Clear
For ICntr = 1 To UBound(vDatabases)
-Addltem vDatabases(ICntr)
Next ICntr
End With

End Sub

Once you have access to the registry key, you can extract descriptive information from the registry to display for
users. Registry keys are returned as \Software\Blackbaud\AFNINI_##, where ## is the database ID number.

Three useful keys are:

Key Sample

<key>\GmAL\mION “The Financial Edge Sample Database”

<key>\GENERAL\DSN \HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INNAFNINI_50
<key>\GENERAL\SYSTEMPATH C:\Program Files\The Financial Edge

The LastErrorMessage Property

LastErrorMessage is a read-only property you can use to display the reason for an Init method failure.

“"Initialize the FE_API object and attempt to connect to the FE sample database
IT Not moFE_API_Init("", "Supervisor™, "Admin*, 50) Then
MsgBox '*Cannot connect to database for the following reason: ™ _
moFE_API .LastErrorMessage, vbOKOnly Or vblnformation
Exit Sub
End If

107

BLAcCKkBAUD API

The QueryShutDown Method

You can place the QueryShutDown method in the QueryUnload event of your main form to ensure that all
non-modal Financial Edge forms are unloaded. QueryShutDown returns False if one or more of the non-modal
forms cannot be unloaded.

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
"Make sure all non-modal FE_ forms are closed
1T Not moFE_API .QueryShutDown Then
Cancel = True
End IFf
End Sub

The SignOutOnTerminate Property

If set to True (-1), this property forces your instance of The Financial Edge to log off when the FE_API object is
released.

"This causes the application to log off The Financial Edge.

"If the property is not set to "True"™, the user remains logged into
"The Financial Edge when the custom code ends.

moFE_API .SignOutOnTerminate = True

Set moFE_API = Nothing

Managing the FE_Services Object

The FE_Services object provides access to a number of common forms, objects, and collections through the
CreateServiceObjects method. For more information about bbServiceObjects, see the “Object Reference” section
of the VBA and API help file.

The CreateServiceObject Method

FE_Services exposes a number of commonly used forms, objects, and collections through the CreateServiceObject
method. This example uses CreateServiceObject to create an IBBReportinstances collection object that gives you
access to all existing income statement reports.

The following code samples illustrate creating a reference, creating an instance, and initializing the
IBBReportinstances collection.

"Create a reference to an IBBReportinstances collection
Dim oReports As IBBReportlnstances

"Create an instance of the IBBReportinstances collection
Set oReports = oOFE_Services.CreateServiceObject(bbsoReportinstances)

“Initialize the collection with the SessionContext and the
“"report type for an Income Statement
oReports.Init oFE_API .SessionContext, bbrep GL_ IncomeStatement

For a list of service objects you can create, see the “Object Reference” section of the VBA and API help file.

108

CHAPTER 4

The GetProglID Methods

You can use three methods of the FE_Services object to return the full class name of objects that exist in API. With
the class hame, you can use the CreateObject method that is part of Visual Basic to create an instance of the class
using the application name and class ID.

"Add these variable declarations
Dim oRecord As Object
Dim sClassName As String

"Get the class name for the Account data object
sClassName = oFE_Services.GetProglDForDataObject(bbdataGLAccount)

"Create the data object by the Class Name
Set oRecord = CreateObject(sClassName)

"Add these variable declarations

Syntax for the full class name is AppName.ObjectType, for example, GLAccountData7.CGIlAccount. The three
methods for returning full class names are:

» GetProglDForDataObject accepts a member of the bbDataObjConstants enum as a parameter and returns the full
class name for a data object.

» GetProgIDForUIObject accepts a member of the bbDataObjConstants enum as a parameter and returns the full
class name for a user interface object.

» GetProglDForMetaProvider accepts a member of the bbMetaObjects enum as a parameter and returns the full
class name for a meta object.

5 For more information about GetProglDForDataObject and GetProglDForUIObject, see the
bbDataObjConstants topic in the Object Reference section of the VBA and API help file. For more
information about GetProglDForMetaProvider, see the bbMetaObjects topic.

Managing Plug-Ins

Plug-ins are specially built applet extensions of The Financial Edge. A plug-in does just that, it “plugs in” to the
program user interface, opening the door to a wide range of custom functionality. Plug-ins can be as simple as an
HTML page or Microsoft Office document, or as complicated as a multi-level ActiveX document or interactive
spreadsheet. With the flexibility of plug-ins, you can add custom applications and extensions directly into the
accounting package via the Plug-Ins page, which is accessible from the navigation bar. Plug-ins share the database
connection and runtime code resources with The Financial Edge, making them an excellent choice for adding
custom functionality without the overhead of having to build a full-blown API application. In order to build a
plug-in, you must first build a special COM dynamic link library (DLL) using API.

The typical plug-in is made of two parts. The first is a class module that implements the IBBHostedPlugin and the
IBBHeaderInfo interface, and which provides information about the plug-in. The second is a document that
provides the user interface. The document type depends on the application you want to build.

Part One: The IBBHostedPlugin and IBBHeaderInfo Interface

The IBBHostedPlugin and IBBHeaderInfo interface classes provide information to the host, such as the name and
description of the plug-in. You should place these classes in the General Declarations section of your plug-in and
fill in each of the properties and events.

109

BLAcCKkBAUD API

The following table displays properties of the IBBHostedPlugin class:

Property Description
Proglf) Specifies the name of the document to load.
URL Complete path to document specified above. Must include document name. (Use App.Path if document

is in same directory as the DLL.)

With the four IBBHostedPlugin events, you can respond to system and user actions. The following table describes
the four IBBHostedPlugin events:

Event Description
Onlnit Occurs before all other events when the host creates an instance of the plug-in object.
OnLoad Occurs when the plug-in document is loaded into the shell and before control is passed to the user.

OnQueryUnload

Occurs before the document is unloaded.

OnClosedown

Occurs when the host destroys the document.

The following table displays properties of the IBBHeaderInfo class:

Property Description

Name This is the text displayed in the right I5Iug—ln column of the Plug-ins page.
Description This is the text displayed in the left *Description’ column of the Plug-Ins page.
Caption Appears in the top frame when the plug-in is loaded.

Image Lets you specify a graphic to display to the left of the header caption.

Group Reserved for future use. No need to enter anything.

Part Two: The User Interface

You can specify a wide array of document types in the ProgID and URL properties, listing The Financial Edge as
the host. For example, to host an Excel spreadsheet, you would use the following:

Private Property Get IBBHostedPlugin_ProglD() As String
IBBHostedPlugin_ProglID = "pMyPlugin.xls"
End Property

Private Property Get IBBHostedPlugin_URL() As String
IBBHostedPlugin_URL = App.Path & ""\docMyActiveXPlugin.xlIs"

End Property

To host a local HTML page:

Private Property Get IBBHostedPlugin_ProglD() As String
IBBHostedPlugin_ProglD = "pMyPlugin.html"
End Property

Private Property Get IBBHostedPlugin_URL() As String
IBBHostedPlugin_URL = App.Path & '"\docMyActiveXPlugin.html"

End Property

110

CHAPTER 4

To host an ActiveX user document;

Private Property Get IBBHostedPlugin_ProgID() As String
IBBHostedPlugin_ProglD = *"pMyPlugin.vbd”
End Property

Private Property Get IBBHostedPlugin URL() As String
IBBHostedPlugin_URL = App.Path & *“\docMyActiveXPlugin.vbd"

End Property

You can then create a UserDocument to provide a user interface.

Ei pMyPlugln - docMyActiveXPlugln [UserDocument] [[=] B4
(m]

|]
Fiun Program

u]

A pMyFPlugin - docMyActiveXPlugin [Code]

M [=] E3

I(General} j IAIIowCIose [FropertyGet]

Option Explicit

Ivll‘_

Public Property Get AllowClose() Ls Boolean
'Check the checkhox to make sure it is marked
! If hllowClose () is FALZE, the code in Onouervylnloadi)

! cancels the unload of the Plug-In

AllowClose = (chkldllowCloze.Value = vhChecked)

End FProperty

= %g‘l I

111

BLAcCKkBAUD API

In this example the UserDocument contains a single property, AllowClose, which fires when the
cMyActiveXPlugln.cls plug-in calls the OnQueryUnload event. The AllowClose property prevents the user from
closing the plug-in without marking the checkbox at the bottom of the form. This method is useful for validating

user input or ensuring that all required tasks are completed before closing the plug-in.

M Project1 - docMyActiveXPlugin {(Code) M=l B

I(General) j InllanInse [PropertyGet] j

]

Option Explicit

Private m bAllowClose As EBoolean

Fubhlic Property Get AllowClose() As Boolean
bllowClose = (chkillowClose = wvhChecked)

End Property

ET Py

Creating Plug-Ins

To create a plug-in, you must first set references to the Blackbaud FE 7.0 object library, the Blackbaud Common
Shell Interfaces 7.0 type library, and any other libraries you need. For more information about referencing a type
library, see “Using the Type Library” on page 6. Then, you create a new ActiveX DLL project, add a class (or
rename the default “Class1”, if it appears), and add a UserDocument module. The class modules serve as a central
location for you to store all your plug-ins, so you can reuse common forms and code. A single DLL can contain any
number of class modules that implement the IBBHostedPlugin and the IBBHeaderInfo interface. After you set up
your classes, you should add references to the IBBHostedPlugin and IBBHeader interface.

This picture shows a class module:

Project - Project1l
r'—'
EE | oD
=B Eﬁ Pru]ectl (pMyPIugln vhp)

: m cMy.ﬂctweXF‘Iugln {cMyactiveXPlugin. cls)

|_| @ User Documents
. docMyActiverPlugin (docMyActiverPlugin, dob)

> Setting up a simple plug-in class
This procedure and sample code use Visual Basic 6.0 to create a COM dynamic link library (DLL) called
pMyPlugin.DLL.

1. Tosetupaplug-in class, set references to the Blackbaud FE 7.0 object library and the Blackbaud Common
Shell Interfaces 7.0 type library. If you need to reference other libraries, you should also set those

references.

112

CHAPTER 4

2. Add a reference to the interface.

Implements 1BBHostedPlugln

Implements IBBHeaderInfo

"A session context for the application is passed iIn when the
"plug-in is initialized (1BBHostedPlugIN_OnInit()). This may not
"be necessary, depending on the application.

Private moSessionContext As IBBSessionContext

"When the plug-in is loaded (IBBHostedPlugln_OnLoad()), the main
“user interface document is passed in. This may not be
"necessary, depending on the application.

Private moUserDoc As docMyActiveXPlugin * use if ActiveX Page

3. Set initialization information. Note that when a plug-in is first accessed, The Financial Edge host must
perform several initialization tasks before the plug-in is loaded. Because these tasks require that the Onlnit
and OnCloseDown events fire, you cannot use those events to determine whether or not the plug-in has
been run. You should avoid putting code into these events, with the exception of setting a reference to the
SessionContext in Onlnit and clearing the reference in OnCloseDown. OnLoad and OnQueryUnLoad do
not fire during the initialization process, so you can use them for any required start-up and closedown code.

Private Sub I1BBHostedPlugin_Onlnit(ByVal oApp As IBBShelllnterfaces. IBBHostedApp)
Set moContext = o0App-System.SessionContext
End Sub

Private Sub IBBHostedPlugin_OnLoad(ByVal oDoc As Object)
Set moUserDoc = oDoc
End Sub

4. Specify the name of the plug-in user interface document. The IBBHostedPlugin_URL property should
return the path to the user interface file. If your interface consists of user documents, when you create the
DLL, the user documents are created in the same directory as the *.vbd DLL.

"Uses App.Path to return the path to your compiled DLL file.
Private Property Get IBBHostedPlugin_ProgID() As String

IBBHostedPlugin_ProgID = "pMyPlugin." & TypeName(moUserDoc)
End Property

Private Property Get IBBHostedPlugin _URL() As String
IBBHostedPlugin_URL = App.Path & *\docMyActiveXPlugin.vbd"
End Property

5. Create a user-friendly description for your plug-in. This text appears as a link on the Plug-ins page.

Private Property Get IBBHeaderInfo Name() As String
IBBHeaderInfo_Name = "My ActiveX Plug-in"
End Property
Private Property Get IBBHeaderlInfo Description() As String
IBBHeaderInfo_Description = "A Simple Example of an ActiveX Plug-In"
End Property

113

BLAcCKkBAUD API

6. Create a caption for the plug-in and add a graphic, if desired. These appear at the top of the Plug-Ins page.

Header images can be *.jpg, *.gif, or *.bmp format, but they are restricted to 32 x 32 pixels.

Private Property Get IBBHeaderInfo_Caption() As String
IBBHeaderInfo_Caption = "My ActiveX Plug-in*
End Property

Private Property Get IBBHeaderInfo_Image() As String
IBBHeaderInfo_Image = App-Path & ?\MyPlugln.jpg?
End Property

7. Close down the plug-in properly. The IBBHostedPlugin_OnQueryUnload occurs before either the plug-in

or application closes. Linking to a separate HTML page from the shell or switching to another shell menu
item also fires this event. With OnQueryUnload, you can verify information and cancel the close process if
the user did not complete all necessary tasks. If you set bCancel to true, it cancels the unload and returns

the user to the plug-in form. If the user tries to close The Financial Edge, bShelllsUnloading returns True.

Private Sub IBBHostedPlugin_OnQueryUnload(bCancel As Boolean, ByVal bHostlsUnloading

As Boolean
“AllowClose is a public method on the docMyPlugln user
"document. The routine validates the user input
"and determines if the plug-in can be closed.
IT Not moUserDoc.AllowClose Then
MsgBox ''Checkbox must be marked in order to close this plug-in."
bCancel = True
End If
End Sub

Private Sub IBBHostedPlugin_OnClosedown()

“"Clean up module level variables
IT Not moUserDoc Is Nothing Then
Set moUserDoc = Nothing

End If

IT Not moContext Is Nothing Then
Set moContext = Nothing
End If
End Sub

Deploying Plug-Ins

After you compile your plug-in, you must place a copy of the plug-in DLL and any relevant support files in
Financial Edge\Plugins directory. After the files are in place, you can open the plug-in using the link on the
Plug-ins page.

the

114

CHAPTER 4

Managing API Applications

The flexibility of API gives you endless resources for customizing or enhancing The Financial Edge. You can
extend the accounting program’s inherent functionality, access your database from third-party software, add
plug-in features, or use the Financial Edge architecture to create your own applications. The following sections
include code samples illustrating some basic functions you can perform with API. For additional sample API
programs, see the Financial Edge\Help\Samples directory.

Sample: Adding an Annotation Form

The Annotation service object is a child object, meaning it requires a parent record that has been initialized and
loaded. When the Annotation form appears, a reference to the parent object is passed in. The ShowAnnotationForm
routine displays the Annotation form and enables you to add, edit, and delete the annotation from a parent object
record. For example, to display the Annotation form on an account, you would create and load a CGLAccount
object and pass it to ShowAnnotationForm. For more information about service objects, see “Understanding
Service Objects” on page 14. For more information about working with child objects, see “Working with Objects”
on page 14.

The following code sample illustrates adding an Annotation form to an account record.

Private Sub ShowAnnotationForm(oAccount as CGLAccount)

Dim oAnnotationFrm As CAnnotationForm
Set oAnnotationFrm = goFE_Services.CreateServiceObject(bbsoAnnotationForm)

"Load the annotation form with the selected data object
With oAnnotationFrm
-Init goFE_API .SessionContext
.ShowAnnotationForm oAccount, Me
-CloseDown
End With
Set oAnnotationFrm = Nothing

"Save the data object with the new annotation
With oAccount

.Save

-CloseDown
End With

End Sub

Sample: Managing Code Tables

Code tables in The Financial Edge provide advantages such as standardizing user input and helping to speed data
entry. Two service objects give you access to tables and the ability to manipulate them in your application. The
first, bbsoCodeTableServer, gives you access to code table entries for a specific code table and to static code tables.
You can load table entries directly into combo boxes or you can retrieve a variant array containing the table entry
descriptions and their numeric 1Ds. The second object, bbsoTableLookupServer, provides access to code tables
through the standard code table lookup form. From this form, users can add, edit, delete, and select code table
entries.

115

BLAcCKkBAUD API

Using bbsoCodeTableServer

With bbsoCodeTableServer, you can return Financial Edge code table entries, their IDs, and descriptions. In the
following code sample, LoadCodeTableCombo loads a combo called choCodeTable with the Net Asset Class
Types table entries. LoadCodeTableArray returns a two-dimensional variant array, where the first dimension has a
lower bound of 0 and an upper bound of 1. The second dimension has a lower bound of 1 and an upper bound equal
to the number of table entries.

Private Sub LoadCodeTableCombo()
Dim oCodeTableServer As CCodeTablesServer
Set oCodeTableServer = oFE_Services.CreateServiceObject(bbsoCodeTablesServer)
cboCodeTable.Clear

"This loads a combo box with Net Asset Class types
With oCodeTableServer
-Init oFE_API.SessionContext
-LoadCombo cboCodeTable, ctnumGLClass
-CloseDown
End With

Set oCodeTableServer = Nothing
End Sub

Private Sub LoadCodeTableArray()

Dim oCodeTableServer As CCodeTablesServer
Set oCodeTableServer = oFE_Services.CreateServiceObject(bbsoCodeTablesServer)

"This loads an Array with GL Source descriptions along with their IDs
With oCodeTableServer
-Init oFE_API.SessionContext

116

CHAPTER 4

(Continued- page 2 of 2)

" .CodeTableGetDataArray: Returns a 2 dimensional variant array containing
“the ID in vAry(O, n) and the description in VvAry(1, n)

Dim vAry As Variant
Dim 1 as Long

VAry = _CodeTableGetDataArray(ctnumGLSource)

For 1 = LBound(VvAry, 2) To UBound(VvAry, 2)
1stSourceArray.Addltem vAry(0,1) & - & vAry(1, 1)

Next 1

Erase VvAry

oCodeTableServer.CloseDown

End With

Set oCodeTableServer = Nothing

End Sub

Using bbsoTableLookupServer

ShowCodeTableForm displays the standard table entry form and places the return value into the label IblLookup.

Private Sub ShowCodeTableForm()
Dim oTableLookupHandler As CTablelLookupHandler
Set oTableLookupHandler = oFE_Services.CreateServiceObject(bbsoTableLookupServer)

With oTableLookupHandler
-Init oFE_API_SessionContext
.ShowForm ctnumGLSource, oFormToCenterOn:=Me

IT _.Canceled Then

IblLookUp.Caption = **
Else

IblLookUp.Caption = "TableEntries.ID: " & .Selectedltem
End If

-CloseDown
End With
Set oTableLookupHandler = Nothing

End Sub

117

BLAcCKkBAUD API

Sample: Using Grids and Controls

With FEControls.ocx, you can add common Financial Edge grids and associated controls to your application
without having to recreate the grids from scratch. With FeChildGrid, you can use grids and controls to display an
object’s common children, such as notes, attributes, and distributions. With FeDataGrid, you can use a Financial
Edge grid to display all the objects in a collection. To use FEControls.ocx, add the control to a form and initialize it
with the data object and child type you want to see.

@ You can add FEControls7.ocx to your project. From the menu bar, select Tools/Additional Controls. Find
FEControls7 and mark the checkbox.

The Financial Edge installation folder contains two code samples that illustrate the advantages of
FEControls.OCX:

» Example 1: install folder\Help\Samples\Advanced samples\APN\Samples\SamplesinXIs\Book2.xls
» Example 2: install folder\Help\Samples\API\FEControls

Sample: Listing Records

To automate processes in your code, you can loop through collections of top-level objects. For example, to create a
list of all accounts by their descriptions, you can loop through the CGLAccounts collection. To create any
Financial Edge object, you need a valid SessionContext. The SessionContext object contains all the user’s
connection information and can be accessed from the FE_API property “SessionContext”. For more information
about the SessionContext, see “Initializing and Releasing Objects” on page 14.

118

CHAPTER 4

The following code sample illustrates looping through the CGLAccounts collection and adding account
descriptions to a list box.

"This example assumes the global variable goFE_API is declared and initialized
"Create a reference to a CGLAccount and CGLAccounts object

Dim oAccount as CGLAccount

Dim oAccounts as CGLAccounts

“Create an instance of the CGLAccounts object

"Using the SessionContext from the FE_API, set the bReadOnly parameter so we
“don*t lock up the records

Set oAccounts = New CGLAccounts

OAccounts. Init goFE_API._SessionContext, bReadOnly:=True

"Loop through the oAccounts collection and pull out the names
For Each oAccount In oAccounts

With IstRecords

-AddItem oAccount.Fields(GLAccountS_fld_DESCRIPTION)

End With

*Only pull the first 10 records for this demonstration

IT IstRecords.ListCount > 10 Then Exit For
Next

“Clean up the object references
oAccount.CloseDown
Set oAccount = Nothing

oAccounts.CloseDown
Set oAccounts = Nothing

Sample: Managing Media and Notepads

Using the Media and Notepad service objects, you can add, edit, and delete media and notepad records. Both have
similar properties and methods, and because they are child objects, both require a parent record that is initialized
and loaded. You must also set a reference to the parent’s Media or Notepad collection. To display the Media or
Notepad form, you pass the ShowForm method.

BLAcCKkBAUD API

The following code sample illustrates adding new media to a project record.

119

Private Sub ShowMediaForm(oProject As CGLProject)

"Create an instance of the CMediaForm object and create
"the service object bbsoMediaForm

Dim oMediaFrm As CMediaForm
Set oMediaFrm = goFE_Services.CreateServiceObject(bbsoMediaForm)

"Load the Media form with the selected data object

With oMediaFrm
-Init goFE_API .SessionContext

"Set a reference in oMediaFrm to the collection of media

"objects on the parent
Set _MediaObjects = oProject.Media

-ShowForm Me
.CloseDown

End With

Set oMediaFrm = Nothing

"Save the data object with the new media
With oProject

-Save

-CloseDown
End With

End Sub

120

CHAPTER 4

Sample: Printing Reports

With the FE_Services object, you can access standard Financial Edge forms, search screens, data objects, and
reports. For example, to preview all income statements created by the user “Supervisor”, you could initialize the
goFE_Services object and use the CreateServiceObject method to create an instance of the IBBReportinstances
object. Then, you could iterate through the IBBReportinstances collection and preview all reports generated by
Supervisor. For more information about the FE_Services object, see “Managing the FE_Services Object” on
page 107.

“"Create a reference to a IBBReportinstance object
"and a IBBReportinstances collection

Dim oReport As IBBReportlnstance

Dim oReports As IBBReportlnstances

“"Create an instance of the IBBReportlnstances collection
Set oReports = FE_Services.CreateServiceObject(bbsoReportlnstances)

“Initialize the collection with the SessionContext and the report type for Income Statement
OReports.Init FE_API._SessionContext, bbrep GL_IncomeStatement

"Cycle through each report and preview them
For Each oReport In oReports
With oReport
- Init FE_API .SessionContext

"Process only the reports generated by the Supervisor
IT _Property(REPORTPARAMETERNAMES7_fld_ADDEDBYNAME) = "'Supervisor™ Then
-Process bbrep_ProcessOption_Preview
End If
End With

oReport.CloseDown
Set oReport = Nothing

Next

“Clean up the object references
Set oReports = Nothing

121

BLAcCKkBAUD API

Sample: Using the Search Screen

A major advantage of integrating with The Financial Edge is the ability to use the features and functions in the
application without having to recreate them. For example, you can display a search screen and use it to locate and
open account records. To use this form, you first initialize the goFE_Services object, then use the
CreateServiceObject method to create an instance of the IBBSearchScreen object. For more information about the
IBBSearchScreen object, see the Object Reference section of the VBA and API help file.

"Create an instance of an IBBSearchScreen object and create the service object
"bbsoSearchScreen

Dim oSearch As IBBSearchScreen

Set oSearch = FE_Services.CreateServiceObject(bbsoSearchScreen)

"Create a CGLAccount object to hold the returned account
Dim oAccount as CGLAccount

With oSearch
-Init FE_API _SessionContext

"Look only for accounts
-AddSearchType SEARCH_GLACCOUNT

.ShowSearchForm

IT _SelectedID > 0 Then
Set oAccount = _SelectedDataObject
IstRecords.-Addltem oAccount.Fields(GLACCOUNTS_ fld_DESCRIPTION)
oAccount.CloseDown
Set oAccount = Nothing
End If

End With
“"Clean up the object references

oSearch.CloseDown
Set oSearch = Nothing

)
N
N

CHAPTER 4

Sample
Programs

Contents

APl Samples 124
General Ledger Records Samples. i 125
General Ledger Reports Samples. 141
Accounts Payable Records Samples. 152
Accounts Payable Reports Samples i i 170
Fixed Assets Records Samples. i 181
Fixed Assets Reports Samples 185
Accounts Receivable Records Samples i 193
Accounts Receivable Reports Samples i 204
Cash Receipts Records Samples. 212
Cash Receipts Reports Samples 215
Student Billing Records Samples. i 217
Student Billing Reports Samples i 231
Common Samples. 258
VBA Samples. e 269
Validating Dateso e 270
Viewing Query Results in HTML 271
Calculating GST and PST AMOUNtS.o o vt 273
Sending a Warning Message for Large Invoices 275
Requiring Approval for Large Purchase Orders. 276
Creating an Excel Chart from Query Results. 278
Read-Only Database Assistance Samples. 281
Creating an Auto-Refreshing Report 281
Creatingan HTML Dashboard. 281

O
D
)
Q.
®©
e
O

124

CHAPTER 5

This chapter contains code samples for creating applications with API, VBA, and Read-Only Database Assistance.
For additional sample programs, see the The_Financial_Edge\Help\Samples folder.

APl Samples

Several APl sample programs come installed in The_Financial_Edge\Help\Samples\API folder. These samples
consist of two levels of expertise, beginner and intermediate.

The following code samples provide the basics of connecting to The Financial Edge.

Sample

Format

Description

Log In

Visual Basic 6.0

Demonstrates three methods for connecting to a database: connecting directly with
no user interaction, prompting the user for login name and password using the
standard Financial Edge login screen, and using a custom login screen.

Search Screen

Visual Basic 6.0

Uses the standard Financial Edge search screen to lookup account and project
records.

List Records

Visual Basic 6.0

Using the CGLAccounts object, retrieves a list of account descriptions.

The following code samples, using advanced API features, are slightly more complex.

Sample

Format

Description

Attribute Types

Visual Basic 6.0

Demonstrates the Attribute TypeServer object.

Code Table Server

Visual Basic 6.0

Shows how to extract code table information. It also demonstrates the
TableLookupHandler object, which displays the standard code table form.

Forms Visual Basic 6.0 |Uses the CreateServiceObject method of the FE_Services object to display a Search
Screen, Annotation, Media and Notepad forms.

Misc Ul Visual Basic 6.0 |Displays several of the miscellaneous user interface forms, including Print Setup
and the About form. Makes use of the QuickFind method of MiscUI interface to
find records (an alternative to the standard search screen).

Prog IDs Visual Basic 6.0 |Demonstrates an alternate method for creating a data object using the
GetProglDforDataObject method of the FE_Services object.

Reports Visual Basic 6.0 |Shows how to automate running reports through the API.

Treeview of Visual Basic 6.0 |Provides an example of how to display reports in a treeview control, which is a

Reports component available with the Microsoft Windows Common Controls 6.0

(mscomctl.ocx). To use the treeview control, select Project, Components.

Additionally, this guide contains API code samples for records and reports in General Ledger, Accounts Payable,
Fixed Assets, Accounts Receivable, Cash Receipts, and Student Billing and common samples used throughout
The Financial Edge.

1250

SAMPLE PROGRAMS C’«iﬁ“’

General Ledger Records Samples

This section contains code samples for creating applications you can use with General Ledger records. Samples
include adding accounts, projects, and budgets, and configuring accounts.

&% The Financial Edge
File Edit Yiew Go Favortes Toaol: Help

4 Back # Eantyard I Cammunity Services Inc. * General Ledger ~

Shortcuts

S Home
F"T s ;I Records I
'|7r = b Accounts Accounts J
e . Search For an existing account, Enter, view and update information For existing accounts, Create new S J
accounts, !
(@':.'U P Projects Budgets |
E Search For an existing project. Enter, wiew and update information For existing projects, Create new projects,
=
=g Export] E.udgets

Enter, view, and update budget information, Create new budget scenarios,

“?* Journal Entry

¢ s Allocation Sets
(4
Adrinistration
54~ Configuration

Dashbaoard

Maonthly Reports
Weh Links [~

Welcome to General Ledger Done /51

126

CHAPTER 5

Creating a General Ledger Account Structure

The following code sample provides a method for configuring General Ledger accounts from a third-party
application.

“"Initial configuration of the Account involves creating the following
"Account_Structure

“Category Definitions

*Defining Account Codes

"Sets the properties of the Fund and AccountCode Segments of the AccountStructure

Public Function Create_Required_Segments(ByVal sFundlength As String, ByVal sSeparator
As String, ByVal sAccountlength As String)

sSeparator = Get_Separator (sSeparator)

Dim sFundType As String
Dim sAccountType As String

With goCodeTablesServer
sFundType = .StaticTableTranslation(staticnumGLSegmentType, _
staticentryGLSegmentType_Fund)
sAccountType = .StaticTableTranslation(staticnumGLSegmentType, _
staticentryGLSegmentType_AccountCode)
End With

Dim oSegments As cGLSegments
Set oSegments = New cGLSegments

With oSegments

-Init goSessionContext

With .Add
-Fields(GLSEGMENTS_fId_TYPE) = sFundType
-Fields(GLSEGMENTS_fId_LENGTH) = sFundlength
-Fields(GLSEGMENTS_fIld_SEPARATOR) = sSeparator
-Fields(GLSEGMENTS_fId_SEQUENCE) = 1 “"Fund is the first segment

End With

With .Add
-Fields(GLSEGMENTS_fId_TYPE) = sAccountType
-Fields(GLSEGMENTS_fId_LENGTH) = sAccountlength

-Fields(GLSEGMENTS_fld_SEPARATOR) = """ "Separator for account is blank
-Fields(GLSEGMENTS_fld_SEQUENCE) = 2 "“Account is the second segment
End With
-Save
-CloseDown

End With
Set oSegments = Nothing

End Function
"makes an entry in the Segments Table for the segment to be created
"and links it to the codeTable

127

SAMPLE PROGRAMS

(Continued- page 2 of 6)

Friend Function Create_Segment(ByVal sSegName As String, ByVal sSegSep As String, _
ByVal sSegLength As String)

Dim sSegType As String
sSegType = goCodeTablesServer.StaticTableTranslation(staticnumGLSegmentType, _
staticentryGLSegmentType_Table)

sSegSep = Get_Separator(sSegSep)

"GetTableld function returns Tableld if entry exists with the same name as the segment
"It returns O if the entry does not exist
IT GetTableld(sSegName) = O Then

"Creates an entry in CodeTables for the new segment to be added
Create_Table sSegName, sSeglLength

Dim INumOfSeg As Long
Dim oSegments As cGLSegments
Set oSegments = New cGLSegments
With oSegments
-Init goSessionContext
INumOfSeg = .Count “Gets the Current Number of Segments
- 1tem(INumOfSeq) - Fields(GLSEGMENTS_fld_SEPARATOR) = sSegSep
With .Add
-Fields(GLSEGMENTS_fId_TYPE) = sSegType
-Fields(GLSEGMENTS_fld_CODETABLESID) = GetTableld(sSegName)
-Fields(GLSEGMENTS_fId_LENGTH) = sSeglLength
-Fields(GLSEGMENTS_fld_SEPARATOR) = """
-Fields(GLSEGMENTS_fld_SEQUENCE) = INumOfSeg + 1
End With
-Save
-CloseDown
End With
Set oSegments = Nothing
End If
End Function

"This function checks if a segment of the name passed to it already exists
"Returns the "Tableld® if segment exists or 0 if segment doesn®t exist

Private Function GetTableld(ByVal sSegName As String) As Long
Dim oCodeTables As CCodeTables
Dim oCodeTable As CCodeTable

Set oCodeTables = New CCodeTables
oCodeTables. Init goSessionContext

Dim ITableld As Long
For Each oCodeTable In oCodeTables
IT oCodeTable_Fields(ctfNAME) = sSegName Then
ITableld = oCodeTable.Fields(ctfCODETABLEID)

128

CHAPTER 5

(Continued- page 3 of 6)

Exit For
End 1f
Next oCodeTable
oCodeTables.CloseDown
Set oCodeTables = Nothing
GetTableld = ITableld
End Function

"Create a new code table with the same name as the segment

Private Sub Create_Table(ByVal sSegName As String, ByVal sSegLength As String)
Dim oCodeTable As CCodeTable
Set oCodeTable = New CCodeTable

With oCodeTable
-Init goSessionContext
-Fields(ctfACTIVE) = True
-Fields(ctfSHORTDESCLENGTH) = Val (sSegLength)
-Fields(ctfHASSHORTDESC) = True
-Fields(ctfNAME) = sSegName
-Fields(ctfUSERDEFINED) = True
-Fields(ctfSYSTEMMASK) = bbBlackbaud_GL_System
-Save
-CloseDown

End With

Set oCodeTable = Nothing

End Sub

"Define Category Ranges

Friend Function Define_Category_Ranges(_
bAsset As Boolean, lIAssetRangeStart As Long, lAssetRangeEnd As Long, _
bLiability As Boolean, lILiabilityRangeStart As Long, ILiabilityRangeEnd As Long, _
bNetAsset As Boolean, INetAssetRangeStart As Long, INetAssetRangeEnd As Long, _
bRevenue As Boolean, IRevenueRangeStart As Long, IRevenueRangeEnd As Long, _
bExpense As Boolean, IExpenseRangeStart As Long, IExpenseRangeEnd As Long, _
bGift As Boolean, IGiftRangeStart As Long, IGiftRangeEnd As Long, _
bTransfer As Boolean, ITransferRangeStart As Long, ITransferRangeEnd As Long, _
bGain As Boolean, lIGainRangeStart As Long, lGainRangeEnd As Long, _
bLoss As Boolean, lILossRangeStart As Long, ILossRangeEnd As Long)

*"IT the category is not set to true (meaning it is enables or checked) then it doesn"t
"matter what long value you enter for its category ranges.

Dim sAsset As String

Dim sLiability As String

Dim sNetAsset As String

Dim sRevenue As String

Dim sExpense As String

Dim sGift As String

Dim sTransfer As String

Dim sGain As String

Dim sLoss As String

129

SAMPLE PROGRAMS

(Continued- page 4 of 6)

With goCodeTablesServer

sAsset = _StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType Asset)

sLiability = _StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Liability)

sNetAsset = _StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType NetAsset)

sRevenue = .StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Revenue)

sExpense = .StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Expense)

sGift = _StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Gift)

sTransfer = _StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Transfer)

sGain = .StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Gain)

sLoss = .StaticTableTranslation(staticnumGLCategoryType, _
staticentryGLCategoryType_Loss)

End With

Dim oCategories As cGLCategoryDefinitions
Set oCategories = New cGLCategoryDefinitions
oCategories. Init goSessionContext

Dim oCategory As cGLCategoryDefinition

For Each oCategory In oCategories
With oCategory
Select Case .Fields(GLCATEGORYDEFINITIONS_ fld_CATEGORY)
Case sAsset
-Fields(GLCATEGORYDEFINITIONS_ fld_ENABLED) = bAsset
IT bAsset Then
-Fields(GLCATEGORYDEFINITIONS_ fld_FROMCODE) = lIAssetRangeStart
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) = lAssetRangeEnd
End If
Case sLiability
-Fields(GLCATEGORYDEFINITIONS_fId_ENABLED) = bLiability
IT bLiability Then
-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE)
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) =
End If
Case sNetAsset
-Fields(GLCATEGORYDEFINITIONS_flId_ENABLED) = bNetAsset
IT bNetAsset Then
-Fields(GLCATEGORYDEFINITIONS_ fld_FROMCODE)
-Fields(GLCATEGORYDEFINITIONS_ fld_TOCODE) =
End If
Case sRevenue
-Fields(GLCATEGORYDEFINITIONS_ fld_ENABLED) = bRevenue
IT bRevenue Then

= ILiabilityRangeStart
ILiabilityRangeEnd

= INetAssetRangeStart
INetAssetRangeEnd

130

CHAPTER 5

(Continued- page 5 of 6)

-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE) = IRevenueRangeStart
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) = IRevenueRangeEnd
End If
Case sExpense
-Fields(GLCATEGORYDEFINITIONS_ fld_ENABLED) = bExpense
IT bExpense Then
-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE) = lIExpenseRangeStart
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) = IExpenseRangeEnd
End If
Case sGift
-Fields(GLCATEGORYDEFINITIONS_flId_ENABLED) = bGift
IT bGift Then
-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE)
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) =
End If
Case sTransfer
-Fields(GLCATEGORYDEFINITIONS_fld_ENABLED) = bTransfer
IT bTransfer Then
-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE) = ITransferRangeStart
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) = ITransferRangeEnd
End If
Case sGain
-Fields(GLCATEGORYDEFINITIONS_fld_ENABLED) = bGain
IT bGain Then
-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE) = lGainRangeStart
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) = lGainRangeEnd
End If
Case slLoss
-Fields(GLCATEGORYDEFINITIONS_fld_ENABLED) = bLoss
If bLoss Then
-Fields(GLCATEGORYDEFINITIONS_fld_FROMCODE) = lLossRangeStart
-Fields(GLCATEGORYDEFINITIONS_fld_TOCODE) = lLossRangeEnd
End If
End Select
End With
Next oCategory

= IGiftRangeStart
1GiftRangeEnd

With oCategories
.Save
.CloseDown

End With

Set oCategories = Nothing
Set oCategory = Nothing

End Function
"Define Account Codes

Friend Function Define_Account_Codes(_
sAccountCode As String, sAccountDescription As String, _

sAccountCashflow As String, sAccountWorkingCapital As String, _

131

SAMPLE PROGRAMS

(Continued- page 6 of 6)

sAccountClass As String, bAccountControl As Boolean, _
bAccountContra As Boolean)

Dim oAccountCode As CGLAccountCode

Set oAccountCode = New CGLAccountCode

With oAccountCode
-Init goSessionContext
-Fields(GLACCOUNTCODES_fld_ACCOUNTCODE) = sAccountCode
-Fields(GLACCOUNTCODES_fId_DESCRIPTION) = sAccountDescription
-Fields(GLACCOUNTCODES_fId_CASHFLOW) = sAccountCashflow
-Fields(GLACCOUNTCODES_fId_WORKINGCAPITAL) = sAccountWorkingCapital
-Fields(GLACCOUNTCODES_fId_CLASS) = sAccountClass
-Fields(GLACCOUNTCODES_fId_CONTROLACCOUNT) = bAccountControl
-Fields(GLACCOUNTCODES_fId_CONTRAACCOUNT) = bAccountContra
-Save
-CloseDown

End With

Set oAccountCode = Nothing

End Function

"Returns the Separator in the format required by FE
Friend Function Get_Separator(ByRef sSeparator As String) As String
With goCodeTablesServer
Select Case sSeparator
Case "Hyphen™
sSeparator = _StaticTableTranslation(_
staticnumGLSegmentSeparator, staticentryGLSegmentSeparator_Hyphen)
Case "*Comma™
sSeparator = _StaticTableTranslation(_
staticnumGLSegmentSeparator, staticentryGLSegmentSeparator_Comma)
Case "Semicolon™
sSeparator = .StaticTableTranslation(_
staticnumGLSegmentSeparator, staticentryGLSegmentSeparator_Semicolon)
Case "'Slash™
sSeparator = _StaticTableTranslation(_
staticnumGLSegmentSeparator, staticentryGLSegmentSeparator_Slash)
Case ""Backslash™

sSeparator = .StaticTableTranslation(staticnumGLSegmentSeparator,
staticentryGLSegmentSeparator_Backslash)

Case "Period"

sSeparator = _StaticTableTranslation(_
staticnumGLSegmentSeparator, staticentryGLSegmentSeparator_Period)
Case Else
sSeparator = _StaticTableTranslation(_
staticnumGLSegmentSeparator, staticentryGLSegmentSparator_None)
End Select

End With
Get_Separator = sSeparator

End Function

132

CHAPTER 5

Adding an Account with a Default Note

With this code sample, you can create a new General Ledger account and add a default notepad to the account
record.

"This code sample creates a new account
*"This code sample works only with the Configuration defined in the
“Sample Database provided with FE

Friend Function createNewAccount(ByVal sAccNum As String, sAccDesc As String, _
ByVal sAccStatus As String) As Long

"sAccNum = ""01-8000-01"
"sAccDesc = "Description of The Account™
"sAccStatus = "Active”

Dim oAccount As CGlAccount
Set oAccount = New CGlIAccount

With oAccount
-Init goSessionContext
"Sets the Account-Number property of the New Account
"Account-Number is a Required and Unique Field
-Fields(GLACCOUNTS_fld_ACCOUNTNUMBER) = sAccNum

"Sets the Description property of the New Account
"Description is a Required Field
-Fields(GLACCOUNTS_fId_DESCRIPTION) = sAccDesc

"Sets the Status property of the New Account
"Status iIs a Required Field with default as “Active~
-Fields(GLACCOUNTS_fld_STATUS) = sAccStatus

"Save the account details into the database
*Validations will take place on this statement
.Save

"Return the 1d of the Account
createNewAccount = .Fields(GLACCOUNTS_fld_GL7ACCOUNTSID)

"Close the Object. So that it can be used by some other function
-CloseDown
End With
Set oAccount = Nothing
End Function

"Creates a note and adds it to the Account Object whose Id is passed to it.

Friend Sub createNote(ByVal lIAccountld As Long, ByVal sNoteAuthor As String, _
ByVal sNoteDesc As String, ByVal dtNoteDate As Date, _
ByVal sNoteType As String, ByVal sNoteTitle As String, _
ByVal sActualNotes As String, ByVal sNotes As String)

133

SAMPLE PROGRAMS

(Continued- page 2 of 3)

“sNoteAuthor = "John Wright"

“sNoteDesc = "‘Description of the Note"
“dtNoteDate = Date

“"sNoteType = "Internal™

"sNoteTitle = "Title of the note"
"sActualNotes = "This iIs just a sample note"

"sNotes = "Detailed Notes About The Account"

Dim oAcct As CGlAccount
Set oAcct = New CGIlAccount

With oAcct
-Init goSessionContext
-Load lAccountld
"set the various properties of the note
With _Notepads.Add
-Fields(NOTEPAD_fld_Author) = sNoteAuthor
-Fields(NOTEPAD_fIld_Description) = sNoteDesc
-Fields(NOTEPAD_fld_NotepadDate) = dtNoteDate
-Fields(NOTEPAD_fld_NotepadType) = sNoteType
-Fields(NOTEPAD_fId_Title) = sNoteTitle
-Fields(NOTEPAD_fld_ActualNotes) = sActualNotes
-Fields(NOTEPAD_fld_Notes) = sNotes
End With
"Save the note details by saving the CGLAccount object
*Validations will take place on this statement

.Save
.CloseDown

End With

Set oAcct = Nothing

End Sub

"This function returns the Account Id of the Account if it exists, O if it doesn"t
"It takes the Account Id as the parameter

Friend Function GetAccountldFromDescription(ByVal sAccountName As String) As Long
Dim oAccounts As cGLAccounts
Set oAccounts = New cGLAccounts
oAccounts. Init goSessionContext, "DESCRIPTION LIKE "' & sAccountName & """, True

Dim IAccountld As Long
Dim oAccount As CGlAccount

For Each oAccount In oAccounts
IT oAccount.Fields(GLACCOUNTS_fId_DESCRIPTION) = sAccountName Then
IAccountld = oAccount.Fields(GLACCOUNTS_fld_GL7ACCOUNTSID)
oAccount.CloseDown
Exit For
End 1f

134

CHAPTER 5

(Continued- page 3 of 3)

oAccount.CloseDown

Next oAccount

“clean up

Set oAccount = Nothing

oAccounts.CloseDown

Set oAccounts = Nothing

GetAccountldFromDescription = IAccountld
End Function

"Displays the Account Form for the account whose Id is passed to it
Friend Function displayAccountForm(ByVal lAccountld As Long) As Long
Dim oAccount As CGlIAccount
Set oAccount = New CGlAccount
With oAccount
-Init goSessionContext
-Load lAccountld
End With

Dim oAccountForm As cGLAccountForm
Set oAccountForm = New cGLAccountForm
With oAccountForm
-Init goSessionContext
Set _AccountObject = oAccount
.ShowForm True, , False
.CloseDown
End With

Set oAccount = Nothing
Set oAccountForm = Nothing
End Function

135

SAMPLE PROGRAMS

Adding a Project

With this code sample, you can add a project, complete with contacts, notes, media, actions, and attributes.

"2.
HEe
4.
O
"6.

"Includes functions to
1.

Create A New Project

Add
Add
Add
Add
Add

Dim
Set

Contact Info to a Project
Project Notes

Project Media

Project Action

Project Attributes

"This function creates a new project
Friend Function Create_New_Project(_

ByVal sProjectld As String, ByVal sProjectDescription As String, _
ByVal sProjectStartDate As String, ByVal sProjectEndDate As String, _
ByVal sProjectType As String, ByVal sProjectStatus As String) As Long

oProject As CGLProject
oProject = New CGLProject

sProjectiD = "1090"
sProjectDescription = "Smith Grant"

" sProjectStartDate = ""07/10/2001"
" sProjectEndDate = ""07/09/2007"

sProjectType = "'Grant"
sProjectStatus = "In Progress"

With oProject

End
Set

-Init goSessionContext
-Fields(GLPROJECTS_fId_PROJECTID) = sProjectld
-Fields(GLPROJECTS_fId_DESCRIPTION) = sProjectDescription
-Fields(GLPROJECTS_fId_STARTDATE) = sProjectStartDate
-Fields(GLPROJECTS_fId_ENDDATE) = sProjectEndDate
-Fields(GLPROJECTS_fId_TYPE) = sProjectType
-Fields(GLPROJECTS_fld_STATUS) = sProjectStatus

-Save

IProjectld = .Fields(GLPROJECTS_fld_GL7PROJECTSID)
-CloseDown

With

oProject = Nothing

Create_New_Project = IProjectld

End Function

"The function adds a new contact to the project passed to it
Friend Function Add_Project_Contact(_

ByVal IProjectld, ByVal sProjectContactName As String, _
ByVal sProjectOrganization As String, ByVal sProjectContactPosition As String, _
ByVal sPhoneType As String, ByVal sPhoneNumber As String)

"sProjectContactName = "Mr. Perry Brown"
"sProjectContactPosition = "Regional Manager"
"sProjectOrganization = "Wachovia"

136

CHAPTER 5

(Continued- page 2 of 5)

* sProjectPhoneType = *""Home"
* sProjectPhoneNumber = 9198888861

With oProject
-Init goSessionContext
-Load IProjectid

With .Contacts.Add
-Fields(GLPROJECTCONTACTS_fld_ORGANIZATION) = sProjectOrganization
-Fields(GLPROJECTCONTACTS_fld_CONTACTPOSITION) = sProjectContactPosition
With _NameObject

-Fields(NAME_fId_FULLNAME) = sProjectContactName
End With

With .Phones.Add
-Fields(Phone_fld_PhoneType) = sPhoneType
-Fields(Phone_fld_Num) = sPhoneNumber
End With
End With
-Save
-CloseDown
End With
End Function

Friend Sub Add_Project_Note(ByVal IProjectld As Long, ByVal sType As String, _
ByVal sTitle As String, ByVal sDescription As String, _
ByVal sNotes As String)

"sNoteType = "Internal™

"sNoteTitle = “Important Note"

"sNoteDesc = "‘Weekly Note By Manager':

"sNotes = "The project is running on schedule. More manpower needed in future."

Dim oProject As CGLProject
Set oProject = New CGLProject

With oProject
-Init goSessionContext
-Load IProjectlid
With _Notepads.Add
-Fields(NOTEPAD_fld_NotepadType) = sType
-Fields(NOTEPAD_fId_Title) = sTitle
-Fields(NOTEPAD_fIld_Description) = sDescription
-Fields(NOTEPAD_fId_Notes) = sNotes
End With
-Save
-CloseDown
End With
Set oProject = Nothing
End Sub

137

SAMPLE PROGRAMS

(Continued- page 3 of 5)

"This function creates a new note and adds it to the project

Friend Sub Add_Project Media(ByVal IProjectld As Long, ByVal sType As String, _
ByVal sAuthor As String, ByVal sTitle As String, ByVal sDesc As String)

"sMediaType = "Guidelines™

"sAuthor = "'Supervisor"

"sMediaTitle = “Insert Picture™

"sMediaDesc = "'Some pictures for this project.”

Dim oProject As CGLProject
Set oProject = New CGLProject

With oProject
-Init goSessionContext
-Load IProjectlid
With .Media.Add
-Fields(MEDIA_fld_MediaType) = sType
-Fields(MEDIA_fld_Author) = sAuthor
-Fields(MEDIA_fld_Title) = sTitle
-Fields(MEDIA_fld_Description) = sDesc
".Fields(MEDIA_ fld Object) = " "link to a media object
End With
-Save
-CloseDown
End With
Set oProject = Nothing
End Sub

"This function creates a new Action and adds it to the project
Friend Sub Add_Project_Action(ByVal IProjectld As Long, ByVal sActionType As String, _
ByVal dtActionDate As Date, ByVal sActionTime As String, _
ByVal sActionStatus As String, ByVal sPriority As String, _
ByVal sAssignedTold As String, ByVal sDescription As String, _
ByVal bAutoRemind As Boolean, ByVal sRemindUserld As String, _
ByVal sRemindNumUnits As String, ByVal sRemindUnitType As String, _
ByVal bActionCompleted As Boolean, ByVal dtDateCompleted As Date)

"sActionType = "Meeting"

"dtActionDate = Date

"sActionTime = Hour(Time) & ":" & Minute(Time) & ":" & Second(Time)
"sActionStatus = ""Pending"

"sPriority = "High"

"sAssignedTold = *Supervisor™

"sDescription = "Adding an action to the current project"
"bAutoRemind = True

"sRemindUserld = "'Supervisor"

“sRemindNumUnits = "1™

"sRemindUnitType = "Days"

"bActionCompleted = True

"dtDateCompleted = Date

138

CHAPTER 5

(Continued- page 4 of 5)

Dim oProject As CGLProject
Set oProject = New CGLProject

With oProject
-Init goSessionContext
-Load IProjectlid
With .Actions.Add
"IT the sActionType does not exist in the Table of ActionType, create an entry
"CreateTableEntry ctnumGLActionType,sActionType,True
-Fields(ACTIONS_fId_ACTIONTYPE) = sActionType
-Fields(ACTIONS_fld_ACTIONDATE) dtActionDate
-Fields(ACTIONS_fId_ACTIONTIME) = sActionTime
"IT TableEntry does not exist then
"CreateTableEntry ctnumGLActionStatus, sActionStatus, True
-Fields(ACTIONS_fId_ACTIONSTATUS) = sActionStatus
-Fields(ACTIONS_fIld_PRIORITY) = sPriority
-Fields(ACTIONS_fId_ASSIGNEDTOID) = sAssignedTold
-Fields(ACTIONS_fId_DESCRIPTION) = sDescription
-Fields(ACTIONS_fld_AUTOREMIND) = bAutoRemind
-Fields(ACTIONS_fIld_REMINDUSERID) = sRemindUserlid
-Fields(ACTIONS_fld_REMINDNUMUNITS) = sRemindNumUnits
-Fields(ACTIONS_fIld_REMINDUNITTYPE) = sRemindUnitType
-Fields(ACTIONS_fld_ACTIONCOMPLETED) = bActionCompleted
-Fields(ACTIONS_fIld_DATECOMPLETED) = dtDateCompleted
-Save
End With
-Save
-CloseDown
End With
Set oProject = Nothing
End Sub

"This function creates a new attribute and adds it to the project

Friend Sub Add_Project_Attribute(ByVal IProjectld As Long, ByVal sAttribld As String, _
ByVal dtAttribDate As Date, ByVal sComments As String, _
ByVal sAttribDesc As String, ByVal sShortAttribDesc)

"sAttribld = "Grant Amount'

"Grant amount attribute must exist in the Project Attributes table for this code to work
"dtAttribDate = Date

"sShortAttribDesc = "Total Grant"

"sAttribDesc = "100000"

"sComments = "‘Grant Manager - Bob Smith"

"sValue = "Bob Smith"

Dim oProject As CGLProject

Set oProject = New CGLProject

With oProject
-Init goSessionContext
-Load IProjectid

SAMPLE PROGRAMS

(Continued- page 5 of 5)

139

With _Attributes.Add
-Fields(Attribute_ fld_ATTRIBUTETYPESID) = getAttributeTypeld(sAttribld, _
bbGlobalAttributeType_GLProject)
-Fields(Attribute_fld_ATTRIBUTEDATE) = dtAttribDate
-Fields(Attribute_fld_COMMENTS) = sComments
-Fields(Attribute_fld_VALUE) = sAttribDesc
End With
-Save
-CloseDown
End With
Set oProject = Nothing
End Sub

Public Function CreateTableEntry(ByVal ITableNum As Long, ByVal skEntryDesc As String, ByVal

bActive As Boolean)
Dim oTableEntry As CTableEntry
Set oTableEntry = New CTableEntry

With oTableEntry
-Init goSessionContext, True
-TableNumber = ITableNum
-Fields(tableentry_fld_ACTIVE) = bActive
-Fields(tableentry_fld_DESCRIPTION) = sEntryDesc
-Save
-CloseDown

End With

Set oTableEntry = Nothing

End Function

140

CHAPTER 5

Adding a Budget
With this code sample, you can add a budget to General Ledger.

Friend Sub AddBudget(ByVal dtBudgetDate As Date, ByVal sScenariold As String, _
ByVal sScenarioDescription As String, ByVal sBudgetType As String, _
ByVal sAccountBudgetld As String, ByVal dAccountBudgetAmount As Double, _
ByVal dBudgetDetailAmount As Double, ByVal sProjectBudgetld As String, _
ByVal sTCodelD As String, ByVal dProjectBudgetAmount As Double, _
ByVal dProjectBudgetDetailAmount As Double)

"dtBudgetDate = "04-01-2000""
"sScenariold = "12"
"sScenarioDescription = "10% Above Projected Cost™
"sBudgetType = "Fiscal Year"
"sAccountBudgetld = "01-1030-00""
"dAccountBudgetAmount = 1200
"dBudgetDetai lAmount = 100
"sProjectBudgetld = ""1001"
"sTCodelD = "Elder Care"
"dProjectBudgetAmount = 120
"dProjectBudgetDetai lAmount = 10

Dim oBudgetScenario As CGLBudgetScenario
Set oBudgetScenario = New CGLBudgetScenario
With oBudgetScenario

-Init goSessionContext

"Set the fiscal year and scenario fields
-Fields(GLBUDGETSCENARIOS_fld_GL7FISCALYEARSID) = _
goFE_Service.GLFiscalYearFromDate(dtBudgetDate)
-Fields(GLBUDGETSCENARIOS_fld_GL7BUDGETSCENARIOSID) = _
AddScenarioTableEntry(sScenarioDescription, sScenariold)
-Fields(GLBUDGETSCENARIOS_fld_SCENARIODESCRIPTION) = sScenarioDescription
-Fields(GLBUDGETSCENARIOS_fld_BUDGETTYPE) = sBudgetType
With _AccountBudgets.Add(Q)
"Add required fields
-Fields(GLACCOUNTBUDGETS_fld_GL7ACCOUNTSID) = sAccountBudgetld
-Fields(GLACCOUNTBUDGETS_fld_AMOUNT) = dAccountBudgetAmount

"Set Account Budget Detail amounts

Dim oBudgetDetail As CGLAccountBudgetDetail

For Each oBudgetDetail In _BudgetDetails
oBudgetDetail .Fields(GLACCOUNTBUDGETDETAILS_fId_AMOUNT) = _
dBudgetDetai l1Amount

Next oBudgetDetail

"Create a project budget

With _ProjectBudgets.Add()
-Fields(GLPROJECTBUDGETS_fld_GL7PROJECTSID) = sProjectBudgetld
-Fields(GLPROJECTBUDGETS_fld_TCODEID) = sTCodelD
-Fields(GLPROJECTBUDGETS_fld_AMOUNT) = dProjectBudgetAmount

ary
SAMPLE PROGRAMS “a

(Continued- page 2 of 2)

"set project budget detail amounts
Dim oProjectDetail As CGLProjectBudgetDetail
For Each oProjectDetail In .BudgetDetails
oProjectDetail .Fields(GLPROJECTBUDGETDETAILS_fId_AMOUNT) = _
dProjectBudgetDetai lAmount
Next oProjectDetail
End With
End With
-Save
-CloseDown
End With
Set oBudgetScenario = Nothing
End Sub

General Ledger Reports Samples

This section contains code samples for creating applications you can use with General Ledger reports. Samples
include creating trial balance, detail, balance sheet, and budget adjustment reports.

The Financial Edge

File Edit %iew Go Favortes Tools Help

Back % Forvwand J Community Services Inc, * General Ledger =

Shorteuts g Rele‘tS

Im'f HEme ;I Reports I
b Account Reports ST

b Allocation Reports Reports

b Budget Reports Allacation

P Financial Statements | Reports
P GASE 34 Reports Egldjg;tts

b Journal and Batch Reports T

E d Export
=3) Financial
b Pivot Reports Statements

[
E.g Reports .
b Project Reports GASE 34

E' Reports

Journal and
Batch

w Journal Entry Reports

Pirvak
Reports

3 sﬁ'."l:u:atil:lrl Sets

Froject
Reports

dminiskration

—onfiguration

Monthly Reports
Weh Links [~

Welcome to General Ledger Done lﬂ’

142

CHAPTER 5

Creating a Trial Balance Report
With this code sample, you can create a General Ledger trial balance report.

Public Sub Create_Trial_Balance_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportlnstance(bbrep_ GL TrialBalanceReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fId_NAME) = *"Trial Balance Report Created From API"

"Description of the report
-Property (REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the api™

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With

With oMetaData
"Set the Various Filters

"Set the Account Filter. Select the range of accounts to include in the report
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1,
ValueSet:=CStr(bbFilterType_GL_AccountNumbers))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Range
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Two ways to set the account number. Shown Below.
"Pass the account number directly into the "From®" field
-Fields(FILTERS_fld_FROMVALUE) = "01-1000-00""
"Pass the Id of the Account number into the *"To" field
-Fields(FILTERS_fId_TOID) = goFE_Service.GLAccountIDFromNumber(**01-1200-00"")
End With

"Set the Project Filter. Select the project to include in the report
With _PropertyDataObject(bbrep_Offset Filters, bbrep_ FilterParameter_FilterValues,
valuenumber:=1, ValueSet:=CStr(bbFilterType GL_Projects))

-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_FROMID) = getProjectld(*Annabelle Johnson Endowment')
" .Fields(FILTERS fld FROMVALUE) = "Annabelle Johnson Endowment'

End With

143

SAMPLE PROGRAMS

(Continued- page 2 of 2)

"Set the Classes Filter. Select the Account Class to include in the report
With _PropertyDataObject(bbrep Offset Filters, bbrep_ FilterParameter_FilterValues,
valuenumber:=1, ValueSet:=CStr(bbFilterType GL_ Classes))
-Fields(FILTERS_fld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fIld_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = getldFromCodeTable(ctnumGLClass, _
"Unrestricted Net Assets™)
End With
End With

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing

Set oMetaData = Nothing

End Sub

144

CHAPTER 5

Creating a General Ledger Detail Report
This code sample creates a General Ledger detail report.

Public Sub Create_GL Detail_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportinstance(bbrep_GL GenerallLedgerReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_ fld_NAME) = *"GL Report Created From API™

"Description of the report
-Property (REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the api™

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With

With oMetaData
"Set the Various Filters

"Set the Fund Filter. Select the Fund to include in the report
With _PropertyDataObject(bbrep_ Offset_Filters,
bbrep_FilterParameter_FilterValues, valuenumber:=1,
ValueSet:=CStr(bbFilterType_GL_Funds))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Select Fund with Value "01°
-Fields(FILTERS_fld_FROMVALUE) = "01"
End With

"Set the Account Code filter. Select a range of account codes you want to include
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_GL_AccountCodes))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Range
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMVALUE) = "1000"
-Fields(FILTERS_fld_TOVALUE) = "1200"
End With

SAMPLE PROGRAMS

(Continued- page 2 of 2)

145

"Set the Journal Filter. Select the Journal to include in the report
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_GL_Journals))
-Fields(FILTERS_fld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fld_ACTION) = bbFilterAttributeActionType_Include
"Get the ID of the CodeTable *Journal*
-Fields(FILTERS_fld_FROMID) = searchlInCodeTable(*Journal'™)
End With
End With
*Show the Parameter Form and Close the Report
With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown
End With
Set oReport = Nothing
Set oMetaData = Nothing
End Sub

146

CHAPTER 5

Creating a Project Activity Report
With this code sample, you can create a project activity report.

Public Sub Create_ Project_Activity Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportlnstance(bbrep GL ProjectActivityReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fld_NAME) = "Project Activity Report From API"

"Description of the report
-Property (REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the api™

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData
"Set the Various Filters

"Set the Project Attributes Filter. Select the Project Attributes
" and Their Values to include in the report
With oMetaData.PropertyDataObject(bbrep Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType GL_ProjAttributes))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_GLOBALATTRIBUTETYPE) = bbGlobalAttributeType_GLProject
-Fields(FILTERS_fId_FROMID) = getAttribTypeld("'Endowment Manager')
-Fields(FILTERS_fld_FROMVALUE) = "'Sue White"
End With

"Set the Account Code Filter. Select the range of account codes to include
" in the report
With _PropertyDataObject(bbrep_Offset Filters, bbrep_FilterParameter_FilterValues,

1, ValueSet:=CStr(bbFilterType_GL_AccountCodes))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterlIncludeOption_Range
-Fields(FILTERS_FfId_ACTION) = bbFilterAttributeActionType_Include
.Fields(FILTERS_fld_FROMVALUE) = '*1000"
.Fields(FILTERS_fld_TOVALUE) = "'1200"

End With

End With

147

SAMPLE PROGRAMS

(Continued- page 2 of 2)

*Show the Parameter Form and Close the Report

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing

Set oMetaData = Nothing

End Sub

148

CHAPTER 5

Creating a Balance Sheet
With this code sample, you can create a balance sheet report.

Public Sub Create_ Balance_Sheet_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportlnstance(bbrep_GL BalanceSheet)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property(REPORTPARAMETERNAMES flId_NAME) = *"Balance Sheet Report Created From API"

"Description of the report
-Property (REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the api™

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData
"Set the Various Filters

"Set the Fund Filter. Select the Fund to include in the report
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _

valuenumber:=1, ValueSet:=CStr(bbFilterType GL_ Funds))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Select Fund with Value "01°
-Fields(FILTERS_fld_FROMVALUE) = "01"

End With

"Set the Account Code Filter. Select a range of acct codes to include in the report
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1,
ValueSet:=CStr(bbFilterType_GL_AccountCodes))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Range
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMVALUE) = "1000"
-Fields(FILTERS_fld_TOVALUE) = "1200"
End With

149

SAMPLE PROGRAMS

(Continued- page 2 of 3)

"Set the Journal Filter. Select the Journal to include in the report
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_GL_Journals))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_ Include
"Get the ID of the CodeTable *Journal*
-Fields(FILTERS_flId_FROMID) = searchlnCodeTable(**Journal*™)

End With

*Set the number of columns to 4
-PropertyDataObject(bbrep_Offset_Columns, bbrep_ColumnParameter_Count).Fields(_
REPORTPARAMETERVALUES_fId_NUMBER) = 4

"Set the heading of the 4th column
-PropertyDataObject(bbrep_Offset_Columns, bbrep_ColumnParameter_Heading,
ValueSet:=""C4") .Fields(REPORTPARAMETERVALUES_ fld_TEXT)= "New"

*Set the alignment of the heading of the 4th Column
-PropertyDataObject(bbrep_Offset_Columns, bbrep_ColumnParameter_HeadingAlign, , _
ValueSet:=""C4") .Fields(REPORTPARAMETERVALUES_fld_NUMBER) = Cry_Alignment_Right

"Set the Date Range of the column
-PropertyDataObject(bbrep_Offset_Columns, bbrep_ColumnParameter_DateCombo, , _
ValueSet:=""C4") .Fields(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_SPECIFICDATE

-PropertyDataObject(bbrep_Offset_Columns, bbrep_ColumnParameter_StartDate,
ValueSet:="C4") .Fields(REPORTPARAMETERVALUES_ flId_DATETIME) = Now

*Set the formula of the 4th column

" _Fields(REPORTPARAMETERVALUES fld text) = "{Actual}"

-PropertyDataObject(bbrep_Offset_Columns, bbrep_ColumnParameter_Formula,
ValueSet:=""C4") _Fields(REPORTPARAMETERVALUES_fld_NUMBER) = _
bbrep_ColumnAmountType_Actual

"Set the number of decimals for the 4th Column
-PropertyDataObject(bbrep Offset Columns, bbrep_ColumnParameter_Decimals,
ValueSet:="C4") .Fields(REPORTPARAMETERVALUES flId_NUMBER) = 3

"Create a Multiple Column Heading

With .PropertyDataObject(bbrep Offset MultiColHeadings, 1, valuenumber:=1)
-Fields(REPORTPARAMETERVALUES_ fId_TEXT) = "Multiple Column Heading #1"
"Set the start column for the multiple column heading
-Fields(REPORTPARAMETERVALUES fId_NUMBER) = 1
"Set the end column for the multiple column heading
-Fields(REPORTPARAMETERVALUES fld_NUMBER2) = 3
"Set the alignment
-Fields(REPORTPARAMETERVALUES_ fld_NUMBER3) = Cry_Alignment_Left
"Set the sequence number
-Fields(REPORTPARAMETERVALUES fld_SEQUENCE) = 1

150

CHAPTER 5

(Continued- page 3 of 3)

"As its the one and only multiple heading collumn
-Fields(REPORTPARAMETERVALUES_ fld_BOOLEAN) = bbTrue
"Only save values where true it turned on.
End With
End With

*"Show the Parameter Form and Close the Report

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing

Set oMetaData = Nothing

End Sub

151

SAMPLE PROGRAMS

Creating a Budget Adjustment Report
With this code sample, you can create a budget adjustment report.

Public Function Create_Budget_Adjustment_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportinstance(bbrep_GL BudgetAdjustmentsReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report

-Property (REPORTPARAMETERNAMES fld_NAME) = "Budget Adjustment Report Created From_
API™

"Description of the report
-Property (REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the api™

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData
"Set the Various Filters

"Set the Fund Filter. Select the Fund to include in the report
With .PropertyDataObject(bbrep Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType GL_Funds))
-.Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterincludeOption_Selected
-Fields(FILTERS_FfId_ACTION) = bbFilterAttributeActionType_Include
"Select Fund with Value "01°
-Fields(FILTERS_fld_FROMVALUE) = "01"
End With

"Set the Print Criteria of the format tab

"Scenariold, Show and ProjectAttribute fields will not be included in the report

-PropertyDataObject(bbrep_OffSet_Format, _
bbrep_Format_Criteria_ListOfIncludedltems,
bbrep_BudgetAdjustments_Criteria_ScenariolD).Fields(_
REPORTPARAMETERVALUES_fId_BOOLEAN) = False

-PropertyDataObject(bbrep_OffSet_Format, _
bbrep_Format_Criteria_ListOfIncludedltems,
bbrep_BudgetAdjustments_Criteria_Show).Fields(_
REPORTPARAMETERVALUES_flId_BOOLEAN) = False

152
Ci” CHAPTER 5

(Continued- page 2 of 2)

-PropertyDataObject(bbrep_OffSet_Format, _
bbrep_Format_Criteria_ListOfIncludedltems,
bbrep_BudgetAdjustments_Criteria ProjAttributes).Fields(_
REPORTPARAMETERVALUES_fld_BOOLEAN) = False

End With

*Show the Parameter Form and Close the Report

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing

Set oMetaData = Nothing

End Function

Accounts Payable Records Samples

This section contains code samples for creating applications you can use with Accounts Payable records. Samples
include adding products, vendors, invoices, recurring invoices, credit memos, purchase orders, receipts, and
one-time checks.

The Financial Edge

File Edit “iew Go Favortes Toolz Help

4 Back & Forward J Community Services Inc. * Accounts Pavable ~

Shorkcuts REEUrdS

SEE Haome

"i“f S ;I Records I

e b Products b Credit Memos Froducts

L Records Search For an existing produck, Enter, view and Search For an existing credit memo, Enter, view and Vendars
update information for existing products, Create update information For existing credit memos, Create
- news products, nesy credit memos, Invoices

e ; e

= b Yendors b Purchase Crders Recurring

il zpaits Search For an existing vendor, Enter, view and Search For an existing purchase order, Enter, view Invoices

- S update information for existing vendors, Create new and update information For existing purchase orders., Credit

wendors, Create new purchase orders, T —.

Mail b Invoices P Receipts Purchase
Search For an existing invoice, Enter, wiew and Search For an existing receipt, Enter, wiew and Orders
update information for existing invoices, Create new update information For existing receipts, Create new ;
invoices. receipts. Receipts

e P Recurring Invoices P Requisitions Requisitions
rminiistr atiar
SIS Search For an existing recurring invoice, Enter, view Search For an existing requisitions, View and update
and update information For existing recurring information For existing requisitions,
Canfiguration invaices, Create new recurring invaices,
Dashboard
E Plug-Ins
HE||:|
Maonthly Repaorts
Web Links [~

‘Welcome to Accounts Payable Done 4

153

SAMPLE PROGRAMS

Adding a Product Record

This sample illustrates adding an Accounts Payable product.

Public Function AddProduct(ByVal sProdDescription As String, ByVal sUserDefinedld As _
String, ByVal sUnitOfMeasure As String, ByVal bDisAllowNewlineltems As _
Boolean, ByVal duUnitCost As Double, ByVal IQuantityDecimal As Long, _
ByVal sReceivinglLocation As String) As Long

"sProdDescription = "Manila Folders"

"sUserDefinedld = "2126"

"sUnitOfMeasure = "Each™ "This entry should be in the Units Of Measure Table
“"bDisAllowNewlineltems = False

"IUnitCost = 1.15
"IQuantityDecimal = 2
"sReceivingLocation = "Shipping - Office Supplies”™ "Goes in the Locations Table
Dim IProductld As Long

Dim oProduct As cProduct
Set oProduct = New cProduct

With oProduct
-Init goSessionContext
-Fields(PRODUCTS_fIld_DESCRIPTION) = sProdDescription
-Fields(PRODUCTS_fIld_USERDEFINEDID) = sUserDefinedld
-Fields(PRODUCTS_fld_UNITOFMEASURE) = sUnitOfMeasure
-Fields(PRODUCTS_fId_DISALLOWNEWLINEITEMS) = bDisAllowNewlineltems
-Fields(PRODUCTS_fld_STANDARDUNITCOST) = duUnitCost
-Fields(PRODUCTS_TI1d_QUANTITYDECIMALS) = IQuantityDecimal
-Fields(PRODUCTS_fld_RECEIVINGLOCATION) = sReceivingLocation
-Save
IProductld = _Fields(PRODUCTS_fI1d_PRODUCTS7ID)
-CloseDown

End With

AddProduct = IProductld

Set oProduct = Nothing

End Function

"This function deletes the Product whose Id is passed to it.
Public Sub DeleteProduct(IProductld As Long)
Dim oProduct As cProduct
Set oProduct = New cProduct
With oProduct
-Init goSessionContext
-Load IProductld
-Delete
-CloseDown
End With
Set oProduct = Nothing
End Sub
"This procedure displays the form where the Product details can be modified
Public Sub displayProductForm(ByVal IProductld As Long)

154

CHAPTER 5

(Continued- page 2 of 2)

Dim oProduct As cProduct
Set oProduct = New cProduct
With oProduct
-Init goSessionContext
.Load IProductild
End With

Dim oProductForm As cProductsForm
Set oProductForm = New cProductsForm
With oProductForm
-Init goSessionContext
Set .APProductObject = oProduct
.ShowForm True, , True
-CloseDown
End With

With oProduct
.Save
.CloseDown

End With

Set oProduct = Nothing
Set oProductForm = Nothing
End Sub

155

SAMPLE PROGRAMS

Adding a Vendor Record

With this code sample, you can add a new vendor record.

Public Function AddVendor(ByVal sVendorName As String, _
ByVal sUserDefld As String, ByVal ICustNum As Long, _
ByVal sTaxNumber As String, ByVal sDefaultPayMethod As String, _
ByVal sStatus As String, ByVal sBanksDesc As String, _
ByVal sPaymentOption As String, Optional ByVal sTermsDesc As String,
Optional ByVal dCreditLimit As Double) As Long

"sVendorName = "Smith and Smith"
"sUserDefld = ""27"

"ICustNum = 1999

"sTaxNumber = "'27-07-197927"
"sDefaul tPayMethod = "'Check"

"sStatus = ""Active"
"sBanksDesc = "‘Operating"
"sTermsDesc = "Net 30"

"dCreditLimit = 1000

Dim IBanksld As Long

"IBanksld includes the bank ID if the name of the Bank passed is valid.
"Else it will have 0O

IBanksld = GetBanksldFromDesc(sBanksDesc)

Dim ITermsld As Long

"ITermsld includes the Term ID if the name of the Term passed is valid.
"Else it will have 0O

ITermsld = GetTermsldFromDesc(sTermsDesc)

Dim IVendorld As Long

Dim oVendor As cAPVendor
Set oVendor = New cAPVendor

With oVendor
-Init goSessionContext
-Fields(APVENDORS_fld_VENDORNAME) = sVendorName
-Fields(APVENDORS_fIld_USERDEFINEDID) = sUserDefld
-Fields(APVENDORS_fld_CUSTOMERNUMBER) = ICustNum
-Fields(APVENDORS_fId_TAXIDNUMBER) = sTaxNumber
-Fields(APVENDORS_fld_DEFAULTPAYMENTMETHOD) = sDefaultPayMethod
-Fields(APVENDORS_fIld_STATUS) = sStatus

If IBanksld Then
-Fields(APVENDORS_fld_BANKSID) = IBankslid
End If

If ITermsld Then
-Fields(APVENDORS_fld_TERMSID) = ITermslid
End If

156

CHAPTER 5

(Continued- page 2 of 3)

If dCreditLimit Then
-Fields(APVENDORS_fld_HASCREDITLIMIT) = True
-Fields(APVENDORS_fld_CREDITLIMITAMOUNT) = dCreditLimit
End If

-Fields(APVENDORS_fld_PAYMENTOPTION) = sPaymentOption
.Save
IVendorld = _Fields(APVENDORS_fld_AP7VENDORSID)
-CloseDown

End With

AddVendor = 1Vendorld

Set oVendor = Nothing

End Function

"Sets the distribution for the Vendor whose Id is passed to it.

Public Sub AddVendorDistribution(ByVal IVendorld As Long, ByVal sDebitAcctNuml As String, _
ByVal sAcctPercentl As String, ByVal sAcctSequencel As String, _
ByVal sDebitAcctNum2 As String, ByVal sAcctPercent2 As String, _

ByVal sAcctSequence2 As String)
Dim oVendor As cAPVendor
Set oVendor = New cAPVendor

With oVendor
-Init goSessionContext
.Load IVendorld

With _Distribution.Add
-Fields(BBDISTRIBUTIONS_fld_DEBITACCTNUM) = sDebitAcctNuml
-Fields(BBDISTRIBUTIONS_fld_PERCENT) = sAcctPercentl
-Fields(BBDISTRIBUTIONS_fld_SEQUENCE) = sAcctSequencel

End With

With .Distribution.Add
-Fields(BBDISTRIBUTIONS_fld_DEBITACCTNUM) = sDebitAcctNum2
-Fields(BBDISTRIBUTIONS_fIld_PERCENT) = sAcctPercent2
-Fields(BBDISTRIBUTIONS_fld_SEQUENCE) = sAcctSequence2

End With

-Save

-CloseDown

End With
Set oVendor = Nothing
End Sub

"Displays the Vendor Form for the Vendor whose Id is passed to it.
Public Sub displayVendorForm(lVendorld As Long)
Dim oVendor As cAPVendor
Set oVendor = New cAPVendor
With oVendor
-Init goSessionContext
-Load IVendorld
End With

(Continued- page 3 of 3)

SAMPLE PROGRAMS

157

Dim

oVendorForm As cAPVendorsForm

Set oVendorForm = New cAPVendorsForm

With oVendorForm

End

-Init goSessionContext

Set .APVendorObject = oVendor
.ShowForm True, , True
-CloseDown

With

With oVendor

End

Set
Set
End Sub

.Save
.CloseDown
With

oVendor = Nothing
oVendorForm = Nothing

“"Deletes the vendor whose ID is passed.
Public Sub DeleteVendor(lVendorld As Long)

Dim
Set

oVendor As cAPVendor
oVendor = New cAPVendor

With oVendor

End
Set
End Sub

-Init goSessionContext
-Load IVendorld
-Delete

-CloseDown

With

oVendor = Nothing

158

CHAPTER 5

Adding an Invoice Record
With this code sample, you can add a new Accounts Payable invoice record.

Public Function AddInvoice(ByVal llnvoiceNumber As Long, ByVal dInvoiceAmount As Double, _
ByVal dtlnvoiceDate As Date, ByVal dtlnvoiceDueDate As Date, _

Optional ByVal sVendorName As String) As Long

"sVendorName = "ADS Security Systems"

"l InvoiceNumber = 9898

"dInvoiceAmount = 100

"dtinvoiceDate = Date

"dtinvoiceDueDate = DateAdd(*'M™, 3, dtlnvoiceDate)
"slnvoiceDescription = "Security Camera"

Dim Ilnvoiceld As Long

"IT IVendorld is missing (IVendorld = 0), get the Vendorld from its name.
"IT VendorName is missing, or the given VendorName is not in the list of vendors the
*Utility function will return O

IT IVendorld = O Then
1Vendorld = goFE_Service.APVendorsGetlD(sVendorName, True)
IT IVendorld = O Then
AddInvoice = -1
Exit Function
End IFf
End If

Dim olnvoice As CAPInvoice

Set olnvoice = New CAPInvoice

With olnvoice
-Init goSessionContext
-Fields(APINVOICES_fld_AP7VENDORSID) = IVendorlid
"Applies vendor default to the invoice eg. Discount Percent, Distributions. etc.
-ApplyVendorDefaults True
-Fields(APINVOICES_fId_INVOICENUMBER) = IInvoiceNumber
-Fields(APINVOICES_fId_DESCRIPTION) = slnvoiceDescription
-Fields(APINVOICES_fld_DUEDATE) = dtlnvoiceDueDate
-Fields(APINVOICES_fId_INVOICEAMOUNT) = dInvoiceAmount
-Fields(APINVOICES_fId_INVOICEDATE) = dtlnvoiceDate
-Save
IInvoiceld = _Fields(APINVOICES_fld_AP7INVOICESID)
-CloseDown

End With

Set olnvoice = Nothing

AddInvoice = llnvoiceld

End Function

"This function displays the Invoice Entry Form when the iInovice id is passed to it.
Public Sub displaylnvoiceForm(ByVal llnvoiceld As Long)

ByVal slnvoiceDescription As String, Optional ByVal IVendorld As Long, _

(Continued- page 2 of 2)

SAMPLE PROGRAMS

159

Dim olnvoice As CAPInvoice
Set olnvoice = New CAPInvoice

With olnvoice
-Init goSessionContext
.Load IlInvoiceld

End With

Dim olnvoiceForm As CAPInvoiceForm
Set olnvoiceForm = New CAPInvoiceForm

With olnvoiceForm
-Init goSessionContext
Set _APInvoiceObject = olnvoice
.ShowForm True, , True
-CloseDown

End With

Set olnvoiceForm = Nothing

With olnvoice
.Save
-CloseDown
End With
Set olnvoice = Nothing

End Sub

"This function deletes the iInvoices whose ID is passed to it.
Public Sub Deletelnvoice(llnvoiceld As Long)
Dim olnvoice As CAPInvoice
Set olnvoice = New CAPInvoice
With olnvoice
-Init goSessionContext
-Load llInvoiceld
-Delete
-CloseDown
End With
Set olnvoice = Nothing
End Sub

160

CHAPTER 5

Adding a Recurring Invoice Record
With this code sample, you can add a new Accounts Payable recurring invoice.

Public Function AddRecurringlnvoice(_
ByVal sVendorName As String, ByVal dlnvoiceAmount As Double,
ByVal IlInvoiceNumber As Long, ByVal dtlnvoiceStartDate As Date, _
ByVal slInvoiceFrequency As String, ByVal INumberOflnvoices As Long, _
ByVal sReclnvoiceDescription As String, ByVal sScheduledType As String) As Long
"IVendorName = "Bell Telephones™
“dInvoiceAmount = 1000
“lInvoiceNumber = 9779
"dtinvoiceStartDate = Date

"slnvoiceFrequency = "Monthly"
" INumberOfInvoices = 10
"sReclnvoiceDescription = "Recurring Invoices"

"sScheduledType = "Fixed"

Dim oReclnvoice As CAPRecurringlnvoice
Set oReclnvoice = New CAPRecurringlnvoice

Dim IVendorld As Long
IVendorld = goFE_Service.APVendorsGetlD(sVendorName, True)

Dim IReclnvoiceld As Long
With oReclnvoice
-Init goSessionContext
-Fields(APRECURRINGINVOICES_fId_AP7VENDORSID) = IVendorlid
-ApplyVendorDefaults
-Fields(APRECURRINGINVOICES_fId_INVOICENUMBER) = IlInvoiceNumber
-Fields(APRECURRINGINVOICES_fld_DESCRIPTION) = sReclnvoiceDescription
-Fields(APRECURRINGINVOICES_fId_INVOICEAMOUNT) = dInvoiceAmount
-Fields(APRECURRINGINVOICES_fId_SCHEDULETYPE) = sScheduledType
-Fields(APRECURRINGINVOICES_fId_NUMBEROFINVOICES) = INumberOflnvoices
With .Schedule
-Fields(SCHEDULE_T1d_FREQUENCY)
-Fields(SCHEDULE_T1d_STARTDATE)
-UpdateScheduleDetails
End With
-UpdateScheduledlnvoicesFromSchedule
-Save
IReclInvoiceld = Val(.Fields(APRECURRINGINVOICES_fId_AP7RECURRINGINVOICESID))
-CloseDown
End With

sInvoiceFrequency
dtlnvoiceStartDate

AddRecurringlnvoice = IReclnvoiceld
Set oReclnvoice = Nothing
End Function

"Displays the Recurring Invoice Form

Public Function displayRecurringlnvoice(ByVal llnvoiceld As Long)
Dim oReclnvoice As CAPRecurringlnvoice
Set oReclnvoice = New CAPRecurringlnvoice

(Continued- page 2 of 2)

SAMPLE PROGRAMS

161

With oReclnvoice
-Init goSessionContext
.Load IlInvoiceld

End With

With oReclnvoiceForm
-Init goSessionContext

.ShowForm True, , True
-CloseDown

End With

Set oReclnvoiceForm = Nothing

With oReclnvoice
.Save
-CloseDown
End With
Set oReclnvoice = Nothing
End Function

Dim oReclnvoiceForm As CAPRecurringlnvoiceForm
Set oReclnvoiceForm = New CAPRecurringlnvoiceForm

Set .APRecurringlnvoiceObject = oReclnvoice

162

CHAPTER 5

Adding a Credit Memo Record

This code sample illustrates adding a credit memo.

Public Function AddCreditMemo(ByVal

dtCreditMemoDate As Date, _

ByVal ICreditMemoNumber As Long, _

ByVal sCreditMemoDescription As String, _

ByVal dCreditMemoAmount As Double,

ByVal dtPostDate As Date, ByVal sPostStatus As String, _

Optional ByVal IVendorld As Long, Optional ByVal sVendorName
As String) As Long

“sVendorName = "Bell Telephones'

"dtCreditMemoDate = "06/17/2002"

" ICreditMemoNumber = 420

"sCreditMemoDescription = "Credit Memo For Bell Telephones™
"dCreditMemoAmount = 100

"dtPostDate = Date

"sPostStatus = "Not yet posted”

Dim ICreditMemold As Long

IT IVendorld = 0 Then
IVendorld = goFE_Service.APVendorsGetlD(sVendorName, True)
IT (IVendorld = 0) Then
AddCreditMemo = -1
Exit Function
End IFf
End If

Dim oCreditMemo As CAPCreditMemo
Set oCreditMemo = New CAPCreditMemo

With oCreditMemo
- Init goSessionContext
.Fields(APCREDITMEMOS_fld_AP7VENDORSID) = IVendorld
-ApplyVendorDefaults True
-Fields(APCREDITMEMOS_ fld_AMOUNT) = dCreditMemoAmount
.Fields(APCREDITMEMOS_fld_CREDITMEMODATE) = dtCreditMemoDate
-Fields(APCREDITMEMOS_ fld_CREDITMEMONUMBER) = ICreditMemoNumber
-Fields(APCREDITMEMOS_ fld_DESCRIPTION) = sCreditMemoDescription
.Fields(APCREDITMEMOS_fld_POSTDATE) = dtPostDate
.Fields(APCREDITMEMOS_fld_POSTSTATUS) = sPostStatus
-Save
ICreditMemold = .Fields(APCREDITMEMOS_fld_AP7CREDITMEMOSID)
-CloseDown

End With

AddCreditMemo = ICreditMemold
Set oCreditMemo = Nothing

End Function

163

SAMPLE PROGRAMS

Adding a Purchase Order Record

With this code sample, you can add a purchase order.

Public Function AddPurchaseOrder(ByVal IPONumber As Long, ByVal sPOType As String, _

ByVal dtPODate As Date, ByVal sPOStatus As String, _
ByVal I0rderFrom As String, ByVal sShipVia As String, _
ByVal sComments As String, ByVal sBuyer As String, _
ByVal sDepartment As String, ByVal sConfirmTo As String, _
ByVal IShipTo As String, ByVal sAttention As String, _
Optional ByVal IVendorld As Long, _
Optional ByVal sVendorName As String) As Long

"sVendorName = "ADS Security Systems"

"This Vendor Should exist in the list of vendors

" IPONumber = 5858

"sPOType = "Regular"

"dtPODate = "07/17/2001"

"sPOStatus = "Unprinted purchase order"

"Default for new PO

"10rderFrom = 1

"Primary Address of the Vendor

"sShipVia = "FED-EX"

"sBuyer = ""Susan Thomas"

"There should be an entry for "Susan Thomas'™ in the table of buyers
"sDepartment = "Maintenance"

"There should be an entry for "Maintenance™ iIn the table of Departments
"sConfirmTo = "Manager"

"IShipTo = 1 "Primary Address

"sAttention = "'Susan Thomas"

"sComments = "Purchase Order for ADS Security Systems"

Dim IPurchaseOrderld As Long

IT IVendorld = 0 Then
1Vendorld = goFE_Service.APVendorsGetlD(sVendorName, True)
If IVendorld = O Then
AddPurchaseOrder = -1
Exit Function
End 1f
End 1f

Dim oPurchaseOrder As CAPPurchaseOrder
Set oPurchaseOrder = New CAPPurchaseOrder

With oPurchaseOrder
-Init goSessionContext
-Fields(APPURCHASEORDERS_fld_AP7VENDORSID) = IVendorld
-ApplyVendorDefaul ts
-Fields(APPURCHASEORDERS_fld_PURCHASEORDERNUMBER) = IPONumber
-Fields(APPURCHASEORDERS_fld_PURCHASEORDERTYPE) = sPOType
-Fields(APPURCHASEORDERS_fld_ORDERDATE) = dtPODate
-Fields(APPURCHASEORDERS_fld_STATUS) = sPOStatus

164

CHAPTER 5

(Continued- page 2 of 3)

-Fields(APPURCHASEORDERS_fld_ORDERFROMCONTACT) = 10rderFrom
-Fields(APPURCHASEORDERS_fld_SHIPVIA) = sShipVia
-Fields(APPURCHASEORDERS_fld_BUYER) = sBuyer
-Fields(APPURCHASEORDERS_fld_DEPARTMENT) = sDepartment
-Fields(APPURCHASEORDERS_fld_CONFIRMTO) = sConfirmTo
-Fields(APPURCHASEORDERS_fld_SHIPTO) = IShipTo
-Fields(APPURCHASEORDERS_ fld_ATTENTION) = sAttention
-Fields(APPURCHASEORDERS_fld_PURCHASEORDERCOMMENT) = sComments
.Save
IPurchaseOrderld = _Fields(APPURCHASEORDERS_fld_AP7PURCHASEORDERSID)
-CloseDown

End With

Set oPurchaseOrder = Nothing

AddPurchaseOrder = lPurchaseOrderld

End Function

"This function adds a Lineltem
Public Sub AddPOLineltem(ByVal

to the purchase order.
IPurchaseOrderld As Long, ByVal sLineltemType As String, _

ByVal dtPostDate As Date, ByVal IQuantityOrdered As Long, _

ByVal dtRequiredDate As Date, ByVal dtPromisedDate As Date, _
ByVal sRequestedBy As String, ByVal sPostStatus As String, _

ByVal sProductld As String, Optional ByVal sProductName As String)

"sLineltemType = "Regular™
"sProductld = "FAK"
"IQuantityOrdered = 2
"dtRequiredDate = "09/18/2002"
"dtPromisedDate = "09/15/2002"
"sRequestedBy = "Bill Smith"
"sPostStatus = "Not yet posted™
"dtPostDate = *"07/17/2002"

Dim oPurchaseOrder As CAPPurchaseOrder
Set oPurchaseOrder = New CAPPurchaseOrder

Dim oProduct As cProduct
Set oProduct = New cProduct

"Need to load the product to get the unit cost, description and unit of measure

oProduct. Init goSessionContext
oProduct.Load IProductld

With oPurchaseOrder
-Init goSessionContext
.Load IPurchaseOrderld
With .Lineltems.Add
-Fields(APLINEITEMS_ fId_LINEITEMTYPE) = sLineltemType
-Fields (APLINEITEMS_ fld_PRODUCTNAME) = sProductName
-Fields(APLINEITEMS_ fld_QUANTITYORDERED) = IQuantityOrdered

165

SAMPLE PROGRAMS

(Continued- page 3 of 3)

-ApplyDefaults True
-Fields(APLINEITEMS_fId_UNITCOST) = _
oProduct.Fields(PRODUCTS_fld_STANDARDUNITCOST)
-Fields(APLINEITEMS_fId_DESCRIPTION) = _
oProduct.Fields(PRODUCTS_fld_DESCRIPTION)
-Fields(APLINEITEMS_fId_UNITOFMEASURE) = _
oProduct.Fields(PRODUCTS_fld_UNITOFMEASURE)
-Fields(APLINEITEMS_fld_EXTENDEDCOST) = Round(-Fields(_
APLINEITEMS_fId_UNITCOST) * IQuantityOrdered, 2)
"Round to two decimals
-Fields(APLINEITEMS_fId_DATEREQUIRED) = dtRequiredDate
-Fields(APLINEITEMS_fId_DATEPROMISED) = dtPromisedDate
-Fields(APLINEITEMS_fld_REQUESTEDBY) = sRequestedBy
-Fields(APLINEITEMS_fld_POSTSTATUS) = sPostStatus
-Fields(APLINEITEMS_fld_POSTDATE) = dtPostDate
End With
-Save
-CloseDown
End With
oProduct.CloseDown
Set oProduct = Nothing
Set oPurchaseOrder = Nothing
End Sub

*"This procedure displays the PO form with fields of PO objects whose ID is passed to it.
Public Sub displayPurchaseOrderForm(ByVal IPurchaseOrderld)
Dim oPurchaseOrder As CAPPurchaseOrder
Set oPurchaseOrder = New CAPPurchaseOrder
With oPurchaseOrder
-Init goSessionContext
-Load IPurchaseOrderlid
End With

Dim oPurchaseOrderForm As cAPPOForm
Set oPurchaseOrderForm = New cAPPOForm
With oPurchaseOrderForm
-Init goSessionContext
Set _APPurchaseOrderObject = oPurchaseOrder
.ShowForm True, , True
.CloseDown
End With
Set oPurchaseOrderForm = Nothing

With oPurchaseOrder
.Save
-CloseDown
End With
Set oPurchaseOrder = Nothing

End Sub

166

CHAPTER 5

Adding a Receipt Record

This code sample illustrates adding an Accounts Payable receipt.

Public Function AddReceipt(ByVal IPurchaseOrderld As Long, sReceivedBy As String, _
ByVal sDescription As String, dtReceiptDate As Date) As Long

"sReceivedBy = '""Susan Thomas"
"sDescription = "Receipt of Purchase Order™
"dtReceiptDate = Date

Dim oPurchaseOrder As CAPPurchaseOrder
Set oPurchaseOrder = New CAPPurchaseOrder

Dim IPONumber As Long
With oPurchaseOrder
-Init goSessionContext
-Load IPurchaseOrderld
IPONumber = _Fields(APPURCHASEORDERS_fld_PURCHASEORDERNUMBER)
-CloseDown
End With
Set oPurchaseOrder = Nothing

Dim IReceiptld As Long

Dim oReceipt As CAPReceipt

Set oReceipt = New CAPReceipt

With oReceipt
-Init goSessionContext
-Fields(APRECEIPTS_fId_PONUMBER) = IPONumber
-Fields(APRECEIPTS_fId_RECEIPTDATE) = dtReceiptDate
-Fields(APRECEIPTS_fld_DESCRIPTION) = sDescription
-Fields(APRECEIPTS_fId_RECEIVEDBY) = sReceivedBy
-Save
IReceiptld = .Fields(APRECEIPTS_fIld_AP7RECEIPTSID)
-CloseDown

End With

Set oReceipt = Nothing

AddReceipt = IReceiptld

End Function

"Adds Receipt Item to the Receipt whose Id is passed.

Public Sub AddReceiptltem(ByVal IReceiptld As Long, ByVal IPOLineNumber As Long, _
ByVal IQuantityReceived As Long, ByVal sPostStatus As String,
ByVal dtPostDate As Date)

"IPOLineNumber = 1
"IQuantityReceived = 1
"sPostStatus = "Not yet posted”
"dtPostDate = "07/19/2002"

Dim oReceipt As CAPReceipt
Set oReceipt = New CAPReceipt

SAMPLE PROGRAMS

(Continued- page 2 of 2)

167

With oReceipt
-Init goSessionContext
-Load IReceiptld
With _Receiptltems.Add
-Fields(APRECEIPTITEMS_fld_POLINENUMBER) = IPOLineNumber
-Fields(APRECEIPTITEMS_fld_QUANTITYRECEIVED) = IQuantityReceived
-Fields(APRECEIPTITEMS_fld_POSTSTATUS) = sPostStatus
-Fields(APRECEIPTITEMS_fld_POSTDATE) = dtPostDate
End With
-Save
-CloseDown
End With
End Sub

"This function displays the Receipt form for the receipt whose Id is passed to it.
Public Sub displayReceiptForm(ByVal IReceiptld As Long)
Dim oReceipt As CAPReceipt
Set oReceipt = New CAPReceipt
With oReceipt
-Init goSessionContext
-Load IReceiptld
End With

Dim oReceiptForm As CAPReceiptForm
Set oReceiptForm = New CAPReceiptForm
With oReceiptForm
-Init goSessionContext
Set _APReceiptObject = oReceipt
.ShowForm True, , True
-CloseDown
End With
Set oReceiptForm = Nothing

With oReceipt
-Save
-CloseDown
End With
Set oReceipt = Nothing
End Sub

168

CHAPTER 5

Adding a One-Time Check

With this code sample, you can create a one-time Accounts Payable check.

Public Function AddCheck() As Long
On Error GoTo errH
Dim ICheckld As Long
Dim oCheck As CAPCheck
Set oCheck = New CAPCheck

With oCheck
-Init goSessionContext
"Set what type of check is being created
-CheckType = staticentry_CheckTypes_OneTimeCheck
"Backend ID of the Account
-Fields(CHECKS_FfId_BANKSID) = 1
-Fields(CHECKS_fId_AMOUNT) = 35
-StaticEntryField(CHECKS_fld_CHECKFORMAT) = _

staticentry_PaymentFormat_CHKAPUS2LPPOO1

"Another way to set the check format
" _.Fields(CHECKS_fld_CHECKFORMAT) = ""CHKAPUS2LPP0OO1"
"Another way to set the check format
" _.Fields(CHECKS_fld_CHECKFORMAT) = _

staticentry_ PaymentFormat CHKAPUS1LPPOO1)
-Fields(CHECKS_fld_CHECKNUMBER) = 191917
-Fields(CHECKS_fId_PAYEENAME) = ""John Doe"
-Fields(CHECKS_fId_PRINTERFORCHECKS) = '"\\your_server\printer_name"
-Fields(CHECKS_fId_PRINTLATER) = True
"Add Distribution information
With _Distribution._Add
-Fields(BBDISTRIBUTIONS_ fld_DEBITACCTNUM) = "01-1000-00"
-Fields(BBDISTRIBUTIONS_fld_AMOUNT) = 35
-Fields(BBDISTRIBUTIONS_ fld_CREDITACCTNUM) = *01-2000-00"
End With
"Save the check
.Save
ICheckld = _Fields(CHECKS_fld_CHECKS7I1D)
-CloseDown
End With
Set oCheck = Nothing
"Return the checkid
AddCheck = ICheckld
Exit Function
errH:
MsgBox Err._Description
IT Not oCheck Is Nothing Then
oCheck.CloseDown
Set oCheck = Nothing
End 1If
End Function

goCodeTablesServer.StaticTableTranslation(staticnumPaymentFormat,

(Continued- page 2 of 2)

SAMPLE PROGRAMS

169

"Loads the check and displays the CheckForm
Public Function DisplayCheckForm(ByVal ICheckld As Long)
Dim oCheck As CAPCheck
Set oCheck = New CAPCheck
With oCheck
-Init goSessionContext
-Load ICheckld
End With
Dim oCheckForm As cCheckForm
Set oCheckForm = New cCheckForm
With oCheckForm
-Init goSessionContext
Set .CheckObject = oCheck
.ShowForm True, , False
"This also closes the oCheck object
-CloseDown
End With
Set oCheckForm = Nothing
Set oCheck = Nothing
End Function

170

Cé CHAPTER 5

Accounts Payable Reports Samples

This section contains code samples for creating applications you can use with Accounts Payable reports. Samples
include creating vendor activity, open invoice, bank reconciliation, and purchase order detail reports.

he Financial Edge

File Edt ¥iew Go Fawaorites Toolz Help

4 Back % Forywand J Cammunity Services Inc, * Accounts Payable =

Sharkcuts
|EI 4 Home
St
r- 3 F'!.Eﬂ:l:lr'l:l::

Query
I.g Reports

=T

ks

Administration

Configuration

(] ,3-_:ht| [afo] l:l

rMonthly Reports

12 Reports

‘web Links

b Bank Account Reparts

b Invoice Reports
b Pivot Repaorts

b Purchase Order Reports

b “endor Reports

;I Reports I

Bank.
Account
Reports

Inwoice
Reports

Pivol
Reports

Purchase
Crder
Reports

Wendor
Reports

‘Welcome to Accounts Payable

171

SAMPLE PROGRAMS

Creating a Vendor Activity Report
With this code sample, you can create a vendor activity report.

Public Sub Create_Vendor_Activity_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportinstance(bbrep_AP_VendorActivityReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property(REPORTPARAMETERNAMES_fld_NAME) = *"Vendor Activity Report From API"

"Description of the report
-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With

With oMetaData
"Include Transactions having "Transaction Date" in the following range of dates
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_VendorActivity_ DateCombo_InvoiceDate)
-Fields(REPORTPARAMETERVALUES fld_NUMBER) = bbDATE_SPECIFICRANGE

"Set the Start Date

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_VendorActivity StartDate InvoiceDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''01/20/2000")

"Set the End Date

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_VendorActivity EndDate_lInvoiceDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''07/20/2000")

"Include Transactions having "Post Date" in the last Fiscal Year
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_VendorActivity DateCombo_DueDate) _
-Fields(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_LAST_FISCAL_YEAR

"Show Unapplied balances for the Credit Memos
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_VendorActivity_ IncludeOnlyAppliedCM)
-Fields(REPORTPARAMETERVALUES fld_BOOLEAN) = True
"Do not include vendors with no activity in the specified range

172

CHAPTER 5

(Continued- page 2 of 2)

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_VendorActivity_ IncludeNoTransactions) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = False

"Set the various Filters
"Set the Invoice Filter
With _PropertyDataObject(bbrep_Offset Filters, bbrep_FilterParameter_FilterValues,

valuenumber:=1, ValueSet:=CStr(bbFilterType AP_lnvoices))

-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterincludeOption_Range
-Fields(FILTERS_FfId_ACTION) = bbFilterAttributeActionType_Include
"Two ways to set the invoice number. Shown Below.
"Pass the account number directly into the "FROMVALUE®" field
-Fields(FILTERS_fld_FROMVALUE) = "'34324-001"
"Pass the Id of the Invoice number into the *"TOID" field
-Fields(FILTERS_FfI1d_TOID) = getlnvoiceld(''34324-025")

End With

"Set the Vendor Attribute Filter
With .PropertyDataObject(bbrep_Offset Filters, bbrep_FilterParameter_FilterValues,

valuenumber:=1, ValueSet:=CStr(bbFilterType_ AP_VendorAttributes))
-Fields(FILTERS_fIld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Set the Attribute Type to AP Vendor Type
-Fields(FILTERS_fld_GLOBALATTRIBUTETYPE) = bbGlobalAttributeType_APVendor
"Set the name of the Attribute on which to Filter
-Fields(FILTERS_fld_FROMID) = getAttributeTypeld(_

"Solicit for Donations"™, bbGlobalAttributeType_APVendor)
*Set the value of the Attribute
-Fields(FILTERS_fld_FROMVALUE) = True

End With

With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType_ AP_ReceiptPostStatus))
-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
.Fields(FILTERS_fld_FROMVALUE) = "Not yet posted"
End With

End With

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing

Set oMetaData = Nothing

End Sub

173

SAMPLE PROGRAMS

Creating an Open Invoice Report
With this code sample, you can create an open invoice report.

Public Sub Create_Open_lInvoice_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportinstance(bbrep_AP_OpenlnvoiceReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fld_NAME) = "Open Invoice Report Created from API™

"Description of the report
-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_ReportFormat) _
-Fields(REPORTPARAMETERVALUES_flId_TEXT) = "Summary"

"Show Invoices Open as of "today"

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_DateCombo_Showlnvoices) _
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_TODAY

"Invoice open date is based on "post date”

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_BaseOpenDateOn)
-Fields(REPORTPARAMETERVALUES_fld_TEXT) = "Post Date"

"Discounts are calculated based on a specific date

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_DateCombo_CalcDiscounts) _
-Fields(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_SPECIFICDATE

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_StartDate CalcDiscounts) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''1/20/2001")
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_EndDate_CalcDiscounts) _

174

CHAPTER 5

(Continued- page 2 of 3)

-Fields(REPORTPARAMETERVALUES_fI1d_DATETIME) = DateValue(*'6/20/2001™)

"Base Invoice aging on Post Date
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_BaseAgingOn) _
-Fields(REPORTPARAMETERVALUES_ fld_TEXT) = "Due Date"
"Include Transactions with these dates -
"Transaction date between the following range of dates
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_OpenlInvoice_DateCombo_InvoiceDate) _
-Fields(REPORTPARAMETERVALUES_ fld_NUMBER) = bbDATE_LAST_FISCAL_YEAR

"Due date in the last fiscal year

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_DateCombo_DueDate) _
-Fields(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_LAST_FISCAL_YEAR

"Include All Post Dates

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_Openlnvoice_DateCombo_PostDate) _
-Fields(REPORTPARAMETERVALUES_ fld_NUMBER) = bbDATE_ALLDATES

"Set the various Filters

"Set the Vendor Filter. Include vendors in the following 2 ranges
“valuenumber:=1 for first range
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType AP_Vendors)) _
-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterIncludeOption_Range
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Select the start of the range by setting the name of the vendor
-Fields(FILTERS_fld_FROMID) = goFE_Service.APVendorsGetID(_
"ADS Security Systems", True)
"Select the end of the range by setting the vendorid
-Fields(FILTERS_fld_TOID) = goFE_Service.APVendorsGetID(_
"Main Course Catering", True)
End With
“valuenumber:=2 for the second range
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=2, _
ValueSet:=CStr(bbFilterType_ AP_Vendors))
-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterIncludeOption_Range
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Select the start of the range by setting the name of the vendor
-Fields(FILTERS_fld_FROMID) = goFE_Service.APVendorsGetID(_
"Stevenson Travel™, True)
"Select the end of the range by setting the vendorid
-Fields(FILTERS_fId_TOID) = goFE_Service.APVendorsGetID(_
"Twin Bridges Printing', True)
End With

175

SAMPLE PROGRAMS

(Continued- page 3 of 3)

"Set the Bank Filter
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=2, _
ValueSet:=CStr(bbFilterType_Banks))
-Fields(FILTERS_fIld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fIld_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = goFE_Service.BanksGetBankID(""Operating')
End With
End With
*Show the Parameter Form and Close the Report
With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown
End With
Set oReport = Nothing
Set oMetaData = Nothing

End Sub

176

CHAPTER 5

Creating a Bank Reconciliation Report
This code sample illustrates creating a bank reconciliation report.

Public Sub Create_Bank_ Reconciliation_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportlnstance(bbrep_BR_BankReconciliationReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fld_NAME) = *"Bank Reconciliation Report From API"

"Description of the report
-Property(REPORTPARAMETERNAMES _fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False

End With

With oMetaData

"Set the reconciliation date
-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep BankRec RecDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''12/31/2001")

"Set the beginning balance
-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep_BankRec_ StartBal) _
-Fields(REPORTPARAMETERVALUES_fld_CURRENCY) = 300000

"Set the ending balance
-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep_ BankRec EndBal) _
-Fields(REPORTPARAMETERVALUES_fld_CURRENCY) = 600000

"Show unreconciled transactions between the following range of dates
-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep_ BankRec DateCombo) _
-Fields(REPORTPARAMETERVALUES fld_NUMBER) = bbDATE_SPECIFICDATE

"Set the start date
-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep_ BankRec_ StartDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''01/01/2001')

177

SAMPLE PROGRAMS

(Continued- page 2 of 2)

-PropertyDataObject(bbrep_ OffSet_ReportSpecific, bbrep BankRec_ StartDate) _
-Fields(REPORTPARAMETERVALUES fld_DATETIME) = DateValue('01/01/2001™)

"Set the end date
-PropertyDataObject(bbrep_OffSet_ReportSpecific, bbrep_BankRec_EndDate) _
-Fields(REPORTPARAMETERVALUES fld_DATETIME) = DateValue(''12/31/2001™)

End With

*Show the Parameter Form and Close the Report

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing

Set oMetaData = Nothing

End Sub

178

CHAPTER 5

Creating a Purchase Order Detail Report
With this code sample, you can create purchase order detail reports.

Public Sub Create_ PODetail_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportinstance(bbrep_AP_PurchaseOrderDetai IReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext
-Property (REPORTPARAMETERNAMES fld_NAME) = *"PO Detail Report Created From API"
-Property(REPORTPARAMETERNAMES_fId_DESCRIPTION) = "Fields Set by the API™
-Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE) = True
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData
-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep_POdetail_PODateType) _
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_PODetail_ProDateType).Fields(_

REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep PODetail_ReqDateType)
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_ALLDATES

"Sets the PO Type Filter
With .PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_AP_POPOType)) _
.Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_FfId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_flId_FROMID) = staticentry_APPurchaseorderType Regular
End With

"Sets the PO Status Filter
With .PropertyDataObject(bbrep_ Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_AP_POStatus))
-.Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterincludeOption_Selected
-Fields(FILTERS_FfId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_FROMID) = staticentry_APPurchaseOrderStatus_Closed
End With

"Sets the Vendor Filter
With .PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_AP_Vendors))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilterlIncludeOption_Range
-Fields(FILTERS_FfId_ACTION) = bbFilterAttributeActionType_Include

179

SAMPLE PROGRAMS

(Continued- page 2 of 4)

-Fields(FILTERS_fId_FROMID) = goFE_Service.APVendorsGetID(_
"ADS Security Systems™, True)
-Fields(FILTERS_fId_TOID) = goFE_Service.APVendorsGetID(**Auto Express'™, True)
End With

"Sets the PurchaseOrder Filter
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_AP_PurchaseOrders))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = _
goFE_Service.APPurchaseOrdersGetPurchaseOrderiID(_
"*5858", goFE_Service.APVendorsGetID(*'ADS Security Systems™, True))
End With

"Sets the Department Filter
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_AP_PODepartment))
-Fields(FILTERS_fIld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = getDepartmentld('Development™)
End With

"Sets the Buyers Filter
With _PropertyDataObject(bbrep Offset Filters,
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_ AP_POBuyer))
-Fields(FILTERS_fIld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = getBuyerld("'Tom Johnson')
End With

"Formatting of the Report

"Set the Heading of the Report

-PropertyDataObject(bbrep_OffSet_Format, bbrep_Format Header_ PrintOrgName) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

-PropertyDataObject(bbrep_OffSet_Format, bbrep_Format Header Title) _
-Fields(REPORTPARAMETERVALUES_ fld_TEXT) = "PO Details Report of ABC Company"

-PropertyDataObject(bbrep_OffSet_Format, bbrep_Format Header_ SubTitle) _
-Fields(REPORTPARAMETERVALUES_ fld_TEXT) = "Purchase Order Details"

-PropertyDataObject(bbrep_OffSet Format, bbrep Format_Header_ Align) _
-Fields(REPORTPARAMETERVALUES_ fld_NUMBER) = AlignmentConstants.vbCenter

-PropertyDataObject(bbrep_OffSet Format, bbrep_Format Header_ PrintDate) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

180

CHAPTER 5

(Continued- page 3 of 4)

-PropertyDataObject(bbrep_OffSet Format, bbrep_Format_Header_DateAlign) _
-Fields(REPORTPARAMETERVALUES_ fld_NUMBER) = AlignmentConstants.vbCenter

-PropertyDataObject(bbrep_OffSet Format, bbrep_Format Header_PrintPageNumber) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

-PropertyDataObject(bbrep_OffSet Format, bbrep_Format Header_PageNumberAlign) _
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = AlignmentConstants.vbCenter

-PropertyDataObject(bbrep_OffSet Format, bbrep_Format Header_PrintOnEachPage) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = False

"Set the Format Criteria of The Report

-PropertyDataObject(bbrep_OffSet Format, _
bbrep_Format_Criteria_PrintOnSeparatePage)
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = False

-PropertyDataObject(bbrep_OffSet Format, bbrep_Format Criteria PrintCriteria) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

*Apply Color Scheme to the Report

-PropertyDataObject(bbrep_OffSet Format, _
bbrep_Format_ColorScheme_ApplyColorScheme)
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

-PropertyDataObject(_
bbrep_OffSet_Format, bbrep_Format_ColorScheme_ColumnHeadingBackColor) _
-Fields(REPORTPARAMETERVALUES fld_NUMBER) = vbBlue

-PropertyDataObject(bbrep_OffSet Format, _
bbrep_Format_ColorScheme_ColumnHeadingForeColor) _
-Fields(REPORTPARAMETERVALUES fld_NUMBER) = vbYellow

-PropertyDataObject(bbrep_ OffSet Format,
bbrep_Format_ColorScheme_GroupHeadingBackColor) _

-Fields(REPORTPARAMETERVALUES_fId_NUMBER) = vbRed

-PropertyDataObject(bbrep_OffSet Format, _
bbrep_Format_ColorScheme_GroupHeadingForeColor) _
-Fields(REPORTPARAMETERVALUES_ fld_NUMBER) = vbBlack

"Set the Fields in the Misc Tab
-PropertyDataObject(bbrep_OffSet_Format, bbrep_Format_Misc_ShowCurrencyOn) _
-Fields(REPORTPARAMETERVALUES_ fId_NUMBER) = 1

-PropertyDataObject(bbrep_OffSet_Format, bbrep_Format_Misc_ShowPercentOn) _
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = 2

181,

SAMPLE PROGRAMS C»-q‘_,»

(Continued- page 4 of 4)

-PropertyDataObject(bbrep_OffSet_Format, bbrep_Format Misc_NumDecimalsAmount) _
-Fields(REPORTPARAMETERVALUES fld_NUMBER) = 2

End With

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing
Set oMetaData = Nothing
End Sub

Fixed Assets Records Samples

This section contains code samples for creating applications you can use with Fixed Assets records. Samples
include adding assets and transactions.

The Financial Edge
File Edit Y“iew Go Favortes Toolz Help
4 Back & Forgvand J Community Services Inc. = Fixed Assets ™
Shortcuts ﬁﬁ RECDrdS

Mk Home :

IFtIH: S ;I Records I
T;'_ e b Assets Assets

. e . Search for an existing asset, Enter, wiew and update information for existing assets, Create new assets, Transacti

. b Transactions

(@uum Search For an existing transaction, Enter, wiew and update information For existing transactions, Create new

. transactions,

'.g Reports

l'-"Iail

= Adrministration
nfiguration
Dashboard
a Flug-Ins
7 Help
Monthly Reports
Weh Links H

Welcome to Fised Azzets Done 4

182

CHAPTER 5

Adding an Asset Record

With the following code sample, you can create a new asset record.

Friend Function AddAsset(ByVal
ByVal

ByVal

ByVal

ByVal

"lAssetUserld = 99
"sDescription =
"sMode INumber =
"sSerialNumber =
"sClass =
"slLocation = "Garage"
"dtAcquisitionDate =
"dtDatelnService =
"dAcquisitionValue =

''1999 EX"

20500
Dim IAssetld As Long

Dim oAsset As CFAAsset
Set oAsset = New CFAAsset

With oAsset
-Init goSessionContext

.Save

-CloseDown
End With
Set oAsset = Nothing
AddAsset = lAssetld
End Function

Dim oAsset As CFAAsset
Set oAsset = New CFAAsset
With oAsset
-Init goSessionContext
.Load IAssetld
End With

lIAssetUserld As Long, ByVal sDescription As String, _
sModeINumber As String, ByVal sSerialNumber As String, _
sClass As String, ByVal slLocation As String, _

dtAcquisitionDate As Date, ByVal dtDatelnService As Date, _

dAcquisitionValue As Double) As Long

""Honda Accord"

""CANBEV INNUMBER"*
"Automobiles, Taxis"

"07/27/1999"
"08/15/1999"

-Fields(FAASSETS_fId_USERDEFINEDID) = lIAssetUserld
-Fields(FAASSETS_fld_DESCRIPTION) = sDescription
-Fields(FAASSETS_fld_MODELNUM) = sModelNumber
-Fields(FAASSETS_fld_SERIALNUM) = sSerialNumber
-Fields(FAASSETS_fld_ASSETCLASSESDESCRIPTON) = sClass
-Fields(FAASSETS_fld_LOCATION) = slLocation
-Fields(FAASSETS_fld_ACQUISITIONDATE) = dtAcquisitionDate
-Fields(FAASSETS_fIld_DATEINSERVICE) = dtDatelnService
-Fields(FAASSETS_fld_ACQUISITIONVALUE) = dAcquisitionValue
-ApplyAssetClassDefaults True

IAssetld = .Fields(FAASSETS_fld_FAASSETSID)

"Displays the Asset Form for the Asset whose Id is passed to it
Friend Sub displayAssetForm(ByVal lAssetld As Long)

(Continued- page 2 of 2)

SAMPLE PROGRAMS

183

Dim oAssetForm As cFAAssetForm
Set oAssetForm = New cFAAssetForm
With oAssetForm
-Init goSessionContext
Set .DataObject = oAsset
.ShowForm True, , True
-CloseDown
End With
Set oAssetForm = Nothing

With oAsset
.Save
.CloseDown
End With
Set oAsset = Nothing

End Sub

184

CHAPTER 5

Adding a Transaction Record
With this code sample, you can add a new Fixed Assets transaction.

ByVal sPostStatus As String, ByVal dtPostDate As Date, _
ByVal sComments As String, ByVal dtTranDate As Date, _
ByVal dAmount As Double) As Long

"sTransactiontype = "Asset Acquisition”

"sPostStatus = "Not yet posted"

"dtPostDate = "07/27/2000"

"sComments = ""Comments on the acquisition of Honda Accord"
"dtTranDate = "08/01/1999"

"dAmount = 20500

Dim ITransactionld As Long

Dim oTransaction As CFATransaction
Set oTransaction = New CFATransaction

With oTransaction
-Init goSessionContext
-Fields(FATRANSACTIONS_fId_TRANTYPE) = sTransactiontype
-Fields(FATRANSACTIONS_fld_FAASSETSID) = lAssetlid
-ApplyAssetDefaults True
-Fields(FATRANSACTIONS_fId_TRANDATE) = dtTranDate
-Fields(FATRANSACTIONS_fld_AMOUNT) = dAmount
-Fields(FATRANSACTIONS_fld_POSTSTATUS) = sPostStatus
-Fields(FATRANSACTIONS_fld_POSTDATE) = dtPostDate
-Fields(FATRANSACTIONS_ fld_COMMENTS) = sComments
-Save
ITransactionld = _Fields(FATRANSACTIONS_fIld_FATRANSACTIONSID)
-CloseDown

End With

Set oTransaction = Nothing

AddTransaction = ITransactionld

End Function

"Displays the Transaction Form of the Transacation whose Id is passed to it
Public Sub displayTransactionForm(ByVal ITransactionld As Long)
Dim oTransaction As CFATransaction
Set oTransaction = New CFATransaction
With oTransaction
-Init goSessionContext
-Load ITransactionld
End With

Dim oTransactionForm As CFATransactionForm
Set oTransactionForm = New CFATransactionForm
With oTransactionForm

-Init goSessionContext

Set .DataObject = oTransaction

Friend Function AddTransaction(ByVal lAssetld As Long, ByVal sTransactiontype As String, _

185,

SAMPLE PROGRAMS C»-q‘_,»

(Continued- page 2 of 2)

.ShowForm True, , True
-CloseDown

End With

Set oTransactionForm = Nothing

With oTransaction
.Save
.CloseDown
End With
Set oTransaction = Nothing
End Sub

Fixed Assets Reports Samples

This section contains code samples for creating applications you can use with Fixed Assets reports. Samples
include creating book value, action listing, and depreciation summary reports.

The Financial Edge
File Edit Y“iew Go Favortes Toolz Help

4 Back & Forgvand J Community Services Inc. = Fixed Assets ™

= Transaction
Hins Repors

Administration

. Ele'tS

|m|1" Home ;I —
T?" b Action Reports —J.qctinn

. b issset Reports o
b Pivot Reports Asset
(@L.._‘U P Transaction Reports Reports
r Pirak
:.g Renarts Reports

nfiguration

- \Dashboard

a Flug-Ins

Monthly Reports
weh Links [~

Welcome to Fised Azzets Done 4

186

CHAPTER 5

Creating a Book Value Report
With this code sample, you can create a book value report.

Public Sub Create_Book Value Reports()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportlnstance(bbrep_FA BookValueReport)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES flId_NAME) = "Book Value Report Created From API™

"Description of the report
-Property(REPORTPARAMETERNAMES _fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData

"Calculate Book Value as of "Today"
-PropertyDataObject(bbrep_ OffSet ReportSpecific, bbrep_BookValue AsOfDateType) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = bbDATE_TODAY

"Include Assets which have service date in the following range
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_BookValue_InServiceDateType) _
-Fields(REPORTPARAMETERVALUES_flId_NUMBER) = bbDATE_SPECIFICRANGE
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_BookValue_InServiceStartDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''01/01/2001™)
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_BookValue_InServiceEndDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''06/01/2001™)

"Exclude Disposed Assets

-PropertyDataObject(bbrep_OffSet ReportSpecific, bbrep_BookValue_ ExcludeDisposed) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

"Set the Filters

"Set the Depreciation Method Filter and select Methods to include in the report

"Select the First Method - ACRS

With _PropertyDataObject(bbrep_Offset Filters, bbrep FilterParameter_FilterValues,
valuenumber:=1, ValueSet:=CStr(bbFilterType FA DepreciationMethods))

187

SAMPLE PROGRAMS

(Continued- page 2 of 3)

-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected

-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include

-Fields(FILTERS_fId_CATEGORY) = staticentry_ FADepreciationMethod_ACRS
End With

"Select the Second Method - Declining Balance
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=2, _
ValueSet:=CStr(bbFilterType_FA_DepreciationMethods))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_CATEGORY) = _
staticentry_ FADepreciationMethod_DecliningBalance
End With

"Set the Department Filter

With _PropertyDataObject(bbrep_Offset Filters, bbrep_ FilterParameter_FilterValues,
valuenumber:=1, ValueSet:=CStr(bbFilterType FA Departments))
-Fields(FILTERS_fIld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = searchInCodeTable("'Department', "‘Development')

End With

*Set the Disposal Method Filter - Filter by Exchange Disposal Method
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType FA DisposalMethods))
-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fIld_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = getldFromCodeTable(_
ctnumFADisposalMethod, "Exchange'™)
End With

"Set the Asset Attribute Filter
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType FA AssetAttributes))
-Fields(FILTERS_fld_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
"Set the Attribute Type to AP Vendor Type
-Fields(FILTERS_fld_GLOBALATTRIBUTETYPE) = bbGlobalAttributeType_ FAAsset
"Set the name of the Attribute on which to Filter
-Fields(FILTERS_fld_FROMID) = getAttributeTypeld(_
"Assigned to'", bbGlobalAttributeType_FAAsset)
"Set the value of the Attribute
-Fields(FILTERS_fld_FROMVALUE) = "'Sandy Johnson™
End With

"Set the Location Filter
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _

188

CHAPTER 5

(Continued- page 3 of 3)

End

End

Set
Set
End Sub

valuenumber:=1, ValueSet:=CStr(bbFilterType FA_Locations))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_FROMID) = searchlnCodeTable(_
“Location®™, "Information Technology'™)
End With

"Set the Classes Filter
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType FA Classes))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_FROMID) = getAssetClassld(*"Buildings')
End With

With

With oReport

-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown
With

oReport = Nothing
oMetaData = Nothing

189

SAMPLE PROGRAMS

Creating an Action Listing Report
With this code sample, you can create an action listing report.

Public Sub Create_Action_Listing_Report()
Dim oReport As IBBReportlnstance
Set oReport = goFE_Service.CreateReportinstance(bbrep_FA ActionListing)

Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES fld_NAME) = "Action Listing Report Created From API"

"Description of the report
-Property (REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the api™

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With
With oMetaData

"Include Actions with the "In Service" date as "Today"

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_InServiceDateType) _
-Fields(REPORTPARAMETERVALUES_fIld_NUMBER) = bbDATE_TODAY

"Include Actions with the "Disposal® date between the range of dates specified
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing DisposalDateType)
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_SPECIFICRANGE
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_DisposalStartDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''01/01/2001™)
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_DisposalEndDate) _
-Fields(REPORTPARAMETERVALUES_fId_DATETIME) = DateValue(''06/01/2001™)

"Include Actions with any "Action® Date

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_ActionDateType) _
-Fields(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_ALLDATES

"Include Actions with High and Normal Priority and Exclude Actions with Low Priority
-PropertyDataObject(bbrep_OffSet ReportSpecific, _

190

CHAPTER 5

(Continued- page 2 of 2)

bbrep_ActionListing_IncludeHighPriority) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_IncludeNormalPriority)
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_IncludeLowPriority) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = False

"Include Incomplete Actions, Exclude Complete Actions

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_Includelncomplete) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_ActionListing_IncludeComplete) _
-Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = False

"Set the Filters

"Set the Action Type Filter to "Maintenance®
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType_ ActionTypes))
-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = getldFromCodeTable(ctnumFAActionType, _
"Maintenance™™)
End With

"Set the Action Statuses Filter to "In Progress*®
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, _
valuenumber:=1, ValueSet:=CStr(bbFilterType_ ActionStatuses))
-Fields(FILTERS_fI1d_INCLUDEOPTION) = bbFilterIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include

"In progress'™)
End With

End With

*Show the Parameter Form and Close the Report

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True

.CloseDown
End With

Set oReport = Nothing
Set oMetaData = Nothing

End Sub

-Fields(FILTERS_fld_FROMID) = getldFromCodeTable(ctnumFAActionStatus, _

SAMPLE PROGRAMS

Creating a Depreciation Summary Report
With this code sample, you can create a depreciation summary report.

191

Public Sub Create_Depreciation_Summary Report()
Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
"Description of the report
-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from API"

"Can others execute this report ?
-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True

"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False

End With
With oMetaData

"Include Assets with the "In Service" date in "Last Calendar Year"

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep_DepreciationSummary_InServiceDateType).Fields(_

REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_LASTYEAR

"Include Assets with the "Disposal® date in "This Calendar Year®

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepreciationSummary_InServiceDateType) _
-Fields(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_THISYEAR

"Include Depreciation Transactions with date in the "Last Calendar Year®

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepreciationSummary_TransactionDateType) _
-Fields(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepreciationSummary_SummarizeBy) _
-Fields(REPORTPARAMETERVALUES_ fld_TEXT) = "Location" "Constant ?

"Set the Filters
"Set the Depreciation Method Filter - MACRS

Set oReport = goFE_Service.CreateReportinstance(bbrep_FA DepreciationSummaryReport)

-Property (REPORTPARAMETERNAMES fld_NAME) = "Depreciation Summary Report from API"

192

CHAPTER 5

(Continued- page 2 of 2)

With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_FA_DepreciationMethods))

-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fId_CATEGORY) = staticentry_ FADepreciationMethod_MACRS

End With

"Set the Disposal Method Filter - Filter by Exchange Disposal Method
With _PropertyDataObject(bbrep_Offset Filters, _
bbrep_FilterParameter_FilterValues, valuenumber:=1, _
ValueSet:=CStr(bbFilterType_FA_DisposalMethods))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Selected
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include

"Retirement')
End With

End With

“Show the Parameter Form and Close the Report

With oReport
-Process bbrep_ProcessOption_ShowParameterForm, True
-CloseDown

End With

Set oReport = Nothing
Set oMetaData = Nothing

End Sub

-Fields(FILTERS_fId_FROMID) = getldFromCodeTable(ctnumFADisposalMethod, _

SAMPLE PROGRAMS

Accounts Receivable Records Samples

193

This section contains code samples for creating applications you can use with Accounts Receivable records.
Samples include adding products and billing items, clients, charges, credits, invoices, recurring invoices, returns,
refunds, deposits, and payments.

% The Education Edge

File Edit ¥iew Go Favortes

Tools

Help

4 Back % Forward J Community Services Inc, ™ + Accounts Receivable ™

Shortcuts

IF':I|1-' Home
i
®

L
EEH Expork
o

\2
E Mail

?@ Banks

Administration

nfiguration

shboard

Elackbaud Swstems |

b

-

-

-

-

Products and Billing Iterms

Search For an existing billing iterm or product,
Enter, view and update inforration For existing
products or biling items, Create new products or
billing items.,

Clients

Search Far an existing client, Enter, view and
update information For existing clients, Create
newy clients,

Charges

Search For an existing charge, Enter, view and
update information For existing charges, Create
newys charges,

Credits

Search For an existing credit, Enter, view and
update information For existing credits, Create
newys credits,

Invoices

Search for an existing invoice, Enter, wiew and
update information For existing invoices, Create
new invoices,

b

-

-

-

-

Fecurring Invoices
Search For an existing recurring invoice, Enter,

wview and update information For exisking recurring

invoices, Creake new recurring invoices,

Returns

Search For an existing return, Yiew and update
information For existing returns,

Refunds

Search For an existing refund, Enter, view and
update information For existing refunds, Create
new refunds,

Deposits

Search For an existing deposit, Enter, wigw and
update information For existing depaosits, Create
nesw deposits,

Payments

Search For an existing payment, Enter, view and
update information For existing pavments, Create
new payments,

=

Records

L

Products
and Billing
Items

Clients
Charges
Credits
Invaices

Recurring
Inwoices

Returns
Refunds
Deposits

Payments

HERHAE

Welcome to Accounts Receivable

Done

194

CHAPTER 5

Adding a Client Record

With the following code sample, you can create a new client record.

Private Sub Add_ARClient(ByVal IClientRecordType As EST_ARClientRecordType, _
ByVal sClientName As String, ByVal sClientlD As String, ByVal sStatus As String, _
ByVal sClientType As String, ByVal sProvider As String, ByVal sUserlD As String, _
ByVal sPIN As String, ByVal sCFDA As String, ByVal slndustry As String, _

ByVal sTerritory As String, ByVal sGender As String, ByVal sSSN As String, _

ByVal dtBirthDate As Date, ByVal sReligion As String, ByVal sEthnicity As String)

IClientRecordType = staticentry ARClientRecordType Individual Or IClientRecordType
"staticentry_ ARClientRecordType Organization

" sClientName = "Client 1"

- sClientID = "1"

- sStatus = "Active"
" sClientType = "Social Club"
- sProvider = "Lois"

" sUserlID = "CL1"

- SPIN = "4489"

sGender = "Male"

" SSSN = "123-45-6789"

" dtBirthDate = "09/12/1973"

sReligion = "Baptist™

sEthnicity = "Caucasian"

- sCFDA = "CFDA 1"

sindustry = "Retail”

sTerritory = "Green" Dim IAssetld As Long

Dim oClient As CARClient
Dim oWarningRule As IBBWarningRule
Set oClient = New CARClient

With oClient
-Init goSessionContext
-StaticEntryFie ld(ARCLIENTS_fId_RECORDTYPE) = IClientRecordType
-Fields(ARCLIENTS_fId_CLIENTNAME) = sClientName
-Fields(ARCLIENTS_fIld_USERDEFINEDID) = sClientlID
-Fields(ARCLIENTS_fI1d_ACCOUNTSTATUS) = sStatus
-Fields(ARCLIENTS_fId_CLIENTTYPE) = sClientType
-Fields(ARCLIENTS_fId_SERVICEPROVIDER) = sProvider
-Fields(ARCLIENTS_fId_CLIENTUSERID) = sUserlD
-Fields(ARCLIENTS_fId_CLIENTPIN) = sPIN

IT IClientRecordType = staticentry_ ARClientRecordType_Individual Then

"Client type is Individual

With .IndividualNameObject
-Fields(NAME_fId_GENDER) = sGender
-Fields(NAME_fId_SSN) = sSSN
.Fields(NAME_fld_BIRTHDATE) = dtBirthDate
-Fields(NAME_fId_RELIGION) = sReligion
.Fields(NAME_fId_ETHNICITY) = sEthnicity

195

SAMPLE PROGRAMS

(Continued- page 2 of 2)

End With

Else "Client type is Organizaton
-Fields(ARCLIENTS_fld_CFDANUMBER) = sCFDA
-Fields(ARCLIENTS_fIld_INDUSTRY) = slndustry
-Fields(ARCLIENTS_FfId_TERRITORY) = sTerritory

End If

"This needs to be done if you want to override warning rule given regarding the
"primary address if one does not exist
Set oWarningRule = oClient
oWarningRule.OverrideWarning(ARClient_Warning_PrimaryAddress) = True

.Save
.CloseDown
End With

Set oClient = Nothing
Set oWarningRule = Nothing

End Sub

196

CHAPTER 5

Adding an Accounts Receivable Invoice Record
With the following code sample, you can create a new invoice record.

Private Sub Add_ARInvoice(ByVal IClientlD As Long, ByVal dtlnvoiceDate As Date, _

ByVal bOnHold As Boolean, ByVal sTermsDiscountPercent As String, _

ByVal dtTermsDiscountDate As Date, ByVal dtDueDate As Date, ByVal sOrderBy As String, _
ByVal dtOrderDate As Date, ByVal IBillToAddressID As Long, ByVal IShipToAddressID As Long)

" IClientID = 1

" dtlnvoiceDate = '"09/23/2004"

" bOnHold = False
sTermsDiscountPercent = 1
dtTermsDiscountDate = "09/30/2004"
" dtDueDate = ""10/23/2004"

" sOrderBy = "ABC"

" dtOrderDate = '09/23/2004"

" IBillToAddresslID = 1

" IShipToAddressiID = 1

Dim oARInvoice As CARInvoice
Set oARInvoice = New CARInvoice

With oARInvoice
-Init goSessionContext
-Fields(ARINVOICES_fId_AR7CLIENTSID) = IClientID
-Fields(ARINVOICES_fId_INVOICEDATE) = dtlnvoiceDate
-Fields(ARINVOICES_fld_ONHOLD) = bOnHold
-Fields(ARINVOICES_fld_TERMSDISCOUNTPERCENT) = sTermsDiscountPercent
-Fields(ARINVOICES_fId_TERMSDISCOUNTDATE) = dtTermsDiscountDate
-Fields(ARINVOICES_fId_DUEDATE) = dtDueDate
-Fields(ARINVOICES_fIld_ORDEREDBY) = sOrderBy
-Fields(ARINVOICES_fIld_ORDEREDONDATE) = dtOrderDate
-Fields(ARINVOICES_fId_BILLTOADDRESS) I1BillToAddressID
-Fields(ARINVOICES_fId_SHIPTOADDRESS) = IShipToAddressID
-Save
-CloseDown

End With

Set oARInvoice = Nothing

End Sub

197

SAMPLE PROGRAMS

Adding an Invoice Line Iltem
With the following code sample, you can create a new invoice line item.

Private Sub Add_ARInvoiceLineltem(ByVal llnvoicelD As Long, ByVal dtTranDate As Date, _
ByVal IPostStatus As EST_ PostStatus, ByVal dtPostDate As Date, _
Byval ICategory As EST_BillingltemTypes, ByVal lltemlD As Long)

" IlnvoicelD = 7
- dtTranDate = '09/24/2004"
" IPostStatus = staticentryPostStatusNotPosted

- dtPostDate = "09/30/2004"
ICategory = staticentry BillingltemType FlatRate
" lltemID = 5 (Item Name: ADT)

Dim oARInvoice As CARInvoice
Set oARInvoice = New CARInvoice

With oARInvoice
-Init goSessionContext

"Load the invoice for which Lineltems are being added
-Load llInvoicelD

With _Lineltems.Add
-Fields(ARLINEITEMS_fId_TRANDATE) = dtTranDate
-StaticEntryField(ARLINEITEMS_fld_POSTSTATUS) = IPostStatus
-Fields(ARLINEITEMS_fId_POSTDATE) = dtPostDate
-StaticEntryField(ARLINEITEMS_fId_CATEGORY) = ICategory
-Fields(ARLINEITEMS_fId_AR7BILLINGITEMSID) = lltemlD

"Load the default amount and distribution specified on the billing item
"as given below or alternatively use distribution child object
-LoadDefaultsFromBillingltem

End With

.Save
.CloseDown
End With

Set oARInvoice = Nothing

End Sub

198

CHAPTER 5

Adding a Charge Record

With the following code sample, you can create a new charge record.

Private Sub Add_ARCharge(ByVal IClientlD As Long, ByVal dtTranDate As Date, _

ByVal ICategory As EST _BillingltemTypes, ByVal lltemIlD As Long, ByVal sUnit As String, _
ByVal dQuantity As Double)

" IClientID = 1

" dtTranDate = "09/24/2004"

" dtDueDate = "'09/30/2004"

" IPostStatus = staticentryPostStatusNotPosted

" dtPostDate = "09/30/2004"

ICategory = staticentry BillingltemType Product
" lltemID = 1

" sUnit = "Box™

" dQuantity = 5

Dim oARCharge As CARCharge
Set oARCharge = New CARCharge

With oARCharge
-Init goSessionContext
-Fields(ARCHARGES_fI1d_AR7CLIENTSID) = IClientlD
-Fields(ARCHARGES_TI1d_TRANDATE) = dtTranDate
-Fields(ARCHARGES_fld_DUEDATE) = dtDueDate
-StaticEntryField(ARCHARGES fld_POSTSTATUS) = IPostStatus
-Fields(ARCHARGES_fI1d_POSTDATE) = dtPostDate
-StaticEntryField(ARCHARGES fld_CATEGORY) = ICategory
-Fields(ARCHARGES_fI1d_AR7BILLINGITEMSID) = IltemlID
-LoadDefaultsFromBillingltem (True)
-Fields(ARCHARGES_fI1d_UNITOFMEASURE) = sUnit
-Fields(ARCHARGES_fTI1d_QUANTITY) = dQuantity
-RecalculateExtendedAmount
-Save
-CloseDown

End With

Set oARCharge = Nothing

End Sub

ByVal dtDueDate As Date, ByVal IPostStatus As EST PostStatus, ByVal dtPostDate As Date, _

SAMPLE PROGRAMS

Adding a Credit Record

With the following code sample, you can create a new credit record.

199

Private Sub Add_ARCredit(ByVal IClientlD As Long, ByVal dtTranDate As Date, _
ByVal lIPostStatus As EST_PostStatus, ByVal dtPostDate As Date, _
Byval ICategory As EST_BillingltemTypes, ByVal lltemlD As Long)

" IClientID = 5
" dtTranDate = "09/24/2004"
" IPostStatus = staticentryPostStatusNotPosted
" dtPostDate = "09/30/2004"

ICategory = staticentry BillingltemType FlatRate
" IltemID = 2

Dim oARCredit As CARCredit
Set o0ARCredit = New CARCredit

With oARCredit
-Init goSessionContext
-Fields(ARCREDITS_fId_AR7CLIENTSID) = IClientlID
-Fields(ARCREDITS_fId_TRANDATE) = dtTranDate
-StaticEntryField(ARCREDITS_fld_POSTSTATUS) = lIPostStatus
-Fields(ARCREDITS_fld_POSTDATE) = dtPostDate
-StaticEntryField(ARCREDITS_fId_CATEGORY) = ICategory
-Fields(ARCREDITS_fId_AR7BILLINGITEMSID) = IltemlID
-LoadDefaultsFromBillingltem (True)

" Define whose charges the credit will apply to.
" The method below will default the payee to the client
" the charge is created for
-PayeeDistribution.LoadDefaul tPayees
-Save
-CloseDown

End With

Set oARCredit = Nothing

End Sub

200

CHAPTER 5

Adding a Billing Item Record

With the following code sample, you can create a new billing item.

Private Sub Add_ARBillingltem(ByVal lltemType As EST_BillingltemTypes, _
ByVal IDateDesc As EST_DateDescription, ByVal cAmount As Currency, _

bAllowTermsDiscount As Boolean, ByVal bAssessFinanceCharge As Boolean, _
ByVal sProvider As String, ByVal sComment As String)

IltemType = staticentry BillingltemType FlatRate
" sitemID = "Flat 1"

" IStatus = staticentryActiveStatus Active
sDescription = "Description

IDateDesc = staticentry DateDescription_AnyDate
" cAmount = 100

" bAllowUserEdit = True

" bTaxable = True

" I1SalesTaxID = 25

bAllowTermsDiscount = True

bAssessFinanceCharge = True

sProvider = "Lois"

sComment = "‘Comment"

Dim oBillingltem As CBillingltem
Set oBillingltem = New CBillingltem

With oBillingltem
-Init goSessionContext
-StaticEntryField(BILLINGITEMS_fId_ITEMTYPE) = IltemType
-Fields(BILLINGITEMS_fId_ITEMID) = sltemlD
-StaticEntryField(BILLINGITEMS_ fld_ACTIVESTATUS) = IStatus
-Fields(BILLINGITEMS_ fld_DESCRIPTION) = sDescription
-StaticEntryField(BILLINGITEMS_fld_DATEDESCRIPTION) = IDateDesc
-Fields(BILLINGITEMS_fId_EXTENDEDAMOUNT) = cAmount
-Fields(BILLINGITEMS_fId_ALLOWUSEREDIT) = bAllowUserEdit
-Fields(BILLINGITEMS_fId_TAXABLE) = bTaxable
-Fields(BILLINGITEMS_fld_DEFAULTSALESTAXITEMHEADERID) = ISalesTaxID
-Fields(BILLINGITEMS_fId_ALLOWTERMSDISCOUNT) = bAllowTermsDiscount
-Fields(BILLINGITEMS_ fld_ASSESSFINANCECHARGES) = bAssessFinanceCharge
-Fields(BILLINGITEMS_fId_SERVICEPROVIDER) = sProvider
-Fields(BILLINGITEMS_fld_DEFAULTCOMMENT) = sComment
-Save
-CloseDown

End With

Set oBillingltem = Nothing

End Sub

ByVal sltemlD As String, ByVal IStatus As EST_ActiveStatus, ByVal sDescription As String, _

ByVal bAllowUserEdit As Boolean, ByVal bTaxable As Boolean, ByVal 1SalesTaxID As Long, _

SAMPLE PROGRAMS

Adding a Refund Record

With the following code sample, you can create a new refund.

201

Private Sub Add_ARRefund(ByVal IClientlD As Long, ByVal dtTranDate As Date, _
ByVal cAmount As Currency, ByVal sComment As String)

" IClientID = 5

" dtTranDate = "09/28/2004"

" IPostStatus = staticentryPostStatusNotPosted
" dtPostDate = "09/30/2004"

- IitemID = 8
- cAmount = 40
- sComment = "‘Refund Comment"

Dim oARRefund As CARRefund
Dim oWarningRule As IBBWarningRule

Set oARRefund = New CARRefund

With oARRefund
-Init goSessionContext
-Fields(ARREFUNDS_fId_AR7CLIENTSID) = IClientlD
-Fields(ARREFUNDS_fIld_TRANDATE) = dtTranDate
-StaticEntryFie ld(ARREFUNDS_fld_POSTSTATUS) = IPostStatus
-Fields(ARREFUNDS_fld_POSTDATE) = dtPostDate
-Fields(ARREFUNDS_fIld_AR7BILLINGITEMSID) = IltemlID
-LoadDefaultsFromRefundBillingltem (True)
-Fields(ARREFUNDS_fld_AMOUNT) = cAmount
-Fields(ARREFUNDS_fld_COMMENT) = sComment

"Warning to apply the refund can be overridden as this can be done later

Set oWarningRule = oARRefund

oWarningRule._OverrideWarning_
(ARRefund_Warning_ApplicationsDoNotExistWithBalance) = True

.Save
.CloseDown

End With

Set oARRefund = Nothing
Set oWarningRule = Nothing

End Sub

ByVal IPostStatus As EST_PostStatus, ByVal dtPostDate As Date, ByVal lltemlD As Long, _

202

CHAPTER 5

Adding an Accounts Receivable Deposit
With the following code sample, you can create a new deposit.

ByVal dtPostDate As Date, ByVal sDescription As String)

" ISystem = bbBlackbaud AR_System

" I1BankID = 3

" dtDepositDate = '09/28/2004"

" dtEntryDate = '09/28/2004"

" sUserDefinedID = "ARD"

" IStatus = staticentry_DepositStatus Open

" IPostStatus = staticentryPostStatusNotPosted
" dtPostDate = "09/30/2004"

" sDescription = ""Test Deposit"

Dim oDeposit As CDeposit

Set oDeposit = New CDeposit

With oDeposit
-Init goSessionContext
-StaticEntryField(DEPOSITS_fld_SYSTEMOFORIGIN) = ISystem
-Fields(DEPOSITS_fld_BANKSID) = IBanklID
-Fields(DEPOSITS_fI1d_DEPOSITDATE) = dtDepositDate
-Fields(DEPOSITS_fld_USERDEFINEDNUMBER) = sUserDefinedID
-StaticEntryField(DEPOSITS_fIld_DEPOSITSTATUS) = IStatus
-StaticEntryField(DEPOSITS_fld_POSTSTATUS) = IPostStatus
-Fields(DEPOSITS_fld_POSTDATE) = dtPostDate
-Fields(DEPOSITS_fI1d_DESCRIPTION) = sDescription
-Save
-CloseDown

End With

Set oDeposit = Nothing

End Sub

Private Sub Add_ARDeposit(ByVal 1System As EST_SystemNames, ByVal IBankID As Long, _
ByVal dtDepositDate As Date, ByVal dtEntryDate As Date, ByVal sUserDefinedID As String, _
ByVal IStatus As EST DepositStatus, ByVal IPostStatus As EST_PostStatus, _

SAMPLE PROGRAMS

Adding an Accounts Receivable Payment
With the following code sample, you can create a new payment.

203

Private Sub Add_ARPayment(ByVal IDepositlD As Long, ByVal IPayerlID As Long, _
ByVal sSource As String, ByVal sComment As String, _
ByVal IReceiptStatus As EST ReceiptStatus, ByVal IReceiptAddressiD As Long, _

" IDepositID = 13

" IPayeriID = 11

sSource = "Mail™

sComment = "‘Comment"

IReceiptStatus = staticentry_ ReceiptStatus NotYetPrinted
" IReceiptAddressiD = 11

cAmount = 50

" cAmountBills = 50

cAmountCoins 0

Dim oPaymentHeader As CPaymentHeader

Set oPaymentHeader = New CPaymentHeader
With oPaymentHeader
-Init goSessionContext

-Fields(PAYMENTHEADERS_fld_CRDEPOSITSID) = IDepositlD
-Fields(PAYMENTHEADERS_fld_PAYERID) = IPayerlD
-Fields(PAYMENTHEADERS_fld_SOURCE) = sSource
-Fields(PAYMENTHEADERS_fld_COMMENT) = sComment

-StaticEntryFie ld(PAYMENTHEADERS fld_RECEIPTSTATUS) = IReceiptStatus
-Fields(PAYMENTHEADERS_fld_RECEIPTADDRESSID) = IReceiptAddressiD

With _PaymentComponents.Add

-ApplyClientDefaults

-Fields(PAYMENTS_fld_AMOUNT) = cAmount

-PayeeDistribution.LoadDefaul tPayees
End With

-Fields(PAYMENTHEADERS_fld_AMOUNT) = cAmount
-StaticEntryFie ld(PAYMENTHEADERS_fld_PAYMENTMETHOD) = _
staticentry_PaymentMethods_Cash
-Fields(PAYMENTHEADERS_fld_AMOUNTBILLS) = cAmountBills
-Fields(PAYMENTHEADERS_fld_AMOUNTCOINS) = cAmountCoins

.Save
.CloseDown
End With

Set oPaymentHeader = Nothing

End Sub

ByVal cAmount As Currency, ByVal cAmountBills As Currency, ByVal cAmountCoins As Currency)

-StaticEntryField(PAYMENTS_fId_PAYMENTTYPE) = staticentry_PaymentType ARPayment

204

CHAPTER 5

Accounts Receivable Reports Samples

This section contains code samples for creating applications you can use with Accounts Receivable reports.
Samples include creating aged accounts receivable, open item, deposit list, and invoice reports.

The Education Edge
Filz Edit Wiew Go Fawvaorites Toolz Help

4 Back % Forywand J Community Services Inc, ™ + Accounts Receivable =

13 Reports

Shortcuts

IFHHJ Fome ;I Reports]
5 b Action Reports P Deposit and Receipt Reports Action
b Analysis Reports b Pivot Reports Reparts
b Bank Account Reports b Product and Billing Item Reports Analysis
b Client Reports P Transaction Reports | Reports
B b Custom Reports Eiggunt
= .! = Reports

Client

.Q Reports Reports
Cuskom
E P ail Reparts

Deposit and
Receipt
Reports

PFiwak
dministration Reparts

Product and
Configuration Eilling Item
Reports

Transaction
Reports

L Dashboard

Blackbaud Systems | LI

‘Welcome to Accounts R eceivable Done lﬂ’

SAMPLE PROGRAMS

Creating an Aged Receivable Report
With this code sample, you can create an aged receivable report.

205

Public Sub Create_ AR_AgedReceivable Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Service.CreateReportlnstance(bbrep_AR_AgedAccountsReceivable)
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report

API™

"Description of the report
-Property(REPORTPARAMETERNAMES_fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY) = False

End With

With oMetaData
"Set the report specific criteria
-PropertyDataObject(bbrep_OffSet_ReportSpecific,

= bbDATE_TODAY

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep AgedAR_TranDate_DateType).Fields(REPORTPARAMETERVALUES fld_NUMBER) _

= bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbRep AgedAR_DueDate DateType) .Fields(REPORTPARAMETERVALUES fld_NUMBER)

= bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep AgedAR_PostDate_ DateType).Fields(REPORTPARAMETERVALUES fld_NUMBER) _

= bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_AgedAR_IncludeBalance) . Fields(REPORTPARAMETERVALUES fId_BOOLEAN) = True

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_AgedAR_BalanceAmount) .Fields(REPORTPARAMETERVALUES Fld_CURRENCY) = 0

-PropertyDataObject(bbrep_OffSet_ ReportSpecific,
bbRep_AgedAR_BalancePeriod) .Fields(REPORTPARAMETERVALUES fld_NUMBER) = -1

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_AgedAR_ReduceBalance) .Fields(REPORTPARAMETERVALUES_ fld_NUMBER)

1
(I

bbRep AgedAR_BaseAgingOn_DateType) .Fields(REPORTPARAMETERVALUES fld_NUMBER)

-Property (REPORTPARAMETERNAMES_ fld_NAME) = ""Aged Receivable Report Created From _

206

CHAPTER 5

(Continued- page 2 of 2)

"Set the various Filters
"Set the Invoice Filter

With .PropertyDataObject(bbrep_Offset Filters, bbrep FilterParameter_FilterValues,
valuenumber:=1, ValueSet:=CStr(bbFilterType AR _Invoice))

-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Range
-Fields(FILTERS_fId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fIld_FROMID) = 1
-Fields(FILTERS_fld_TOID) = 10
End With
End With

With oReport
.Save
-CloseDown

End With

Set oReport = Nothing
Set oMetaData = Nothing

End Sub

SAMPLE PROGRAMS

Creating an Open Item Report
With this code sample, you can create an open item report.

207

Public Sub Create_ AR Openltem_Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Service.CreateReportinstance(bbrep_AR_OpenltemReport)
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_ fld_NAME) = "Open ltem Report Created From API"

"Description of the report
-Property(REPORTPARAMETERNAMES _fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

.Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE) = True

"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False
End With

With oMetaData
"Set the report specific criteria

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_Openltem_ChargesOpenAsOf DateType).Fields _

(REPORTPARAMETERVALUES_fI1d_NUMBER) = bbDATE_TODAY

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbRep_Openltem BaseOpenDateOn) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_Openltem_TransactionDate DateType).Fields _

(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbRep Openltem PostDate DateType).Fields(REPORTPARAMETERVALUES fld_NUMBER) _

= bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_Openltem_IncludeUnapplied).Fields(REPORTPARAMETERVALUES fld_BOOLEAN)

= False
End With

With oReport
.Save
-.CloseDown

End With

Set oReport = Nothing

208

CHAPTER 5

(Continued- page 2 of 2)

End

End

End

End

Set

Sub
End

Set
Set

Sub
Set

Sub
End

Set
Set

Sub

oMetaData = Nothing

.CloseDown
With

oReport = Nothing
oMetaData = Nothing
oMetaData = Nothing

.CloseDown
With

oReport = Nothing
oMetaData = Nothing

209

SAMPLE PROGRAMS

Creating a Deposit List Report
With the following code sample, you can create a deposit list report.

Public Sub Create_ AR DepositList_Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Service.CreateReportlnstance(bbrep_AR _DepositTicket)
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fld_NAME) = "Deposit List Report Created From API™

"Description of the report
-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE) = True

"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False
End With

With oMetaData
"Set the report specific criteria

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep_DeposntReports DepositDateType) .Fields(REPORTPARAMETERVALUES fld_NUMBER) _
bbDATE_ALLDATES
-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep_DeposntReports EnteredOnDateType) . Fields(REPORTPARAMETERVALUES fld_NUMBER) _
bbDATE_ALLDATES
-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep DepositReports_PostDateType) .Fields(REPORTPARAMETERVALUES fld_NUMBER)

= bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbrep DepositReports_DepositNumberFrom) .Fields(REPORTPARAMETERVALUES fld_NUMBER)
2

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbrep_DepositReports_DepositNumberTo) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep DepositReports_IncludeAmounts) .Fields(REPORTPARAMETERVALUES fld_BOOLEAN)
True

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep_DepositReports_IncludeAmountsValue) .Fields(REPORTPARAMETERVALUES fld_

NUMBER) = 100

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbrep_DepositReports_IncludeAR) .Fields(REPORTPARAMETERVALUES fld_BOOLEAN) = True

210

CHAPTER 5

(Continued- page 2 of 2)

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports_IncludeCR) .Fields(REPORTPARAMETERVALUES_f1d_BOOLEAN) = True

End With

With oReport
.Save
-CloseDown

End With

Set oReport = Nothing
Set oMetaData = Nothing

End Sub

SAMPLE PROGRAMS

Creating an Accounts Receivable Invoice Report
With the following code sample, you can create an invoice report.

211

Public Sub Create_AR_Invoice_Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Service.CreateReportlnstance(bbrep_AR_InvoiceReport)
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report

-Property (REPORTPARAMETERNAMES flId_NAME) = "Invoice Report Created From API™
"Description of the report

-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the API"
"Can others execute this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE)
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False

End With

True

With oMetaData
"Set the report specific criteria

-PropertyDataObject(bbrep_ OffSet ReportSpecific, _
bbrep_InvoiceReport_IncludelnvoicesReturns).Fields_

(REPORTPARAMETERVALUES_fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet_ReportSpecific, _
bbrep_InvoiceReport DateType_lInvoiceDate)._Fields_

(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbrep_lnvoiceReport_DateType OrderedDate) .Fields_

(REPORTPARAMETERVALUES_f1d_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbrep_lInvoiceReport_FromlD) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbrep_lnvoiceReport_TolD) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

End With

With oReport
.Save
-CloseDown

End With

Set oReport = Nothing
Set oMetaData = Nothing

End Sub

212

CHAPTER 5

Cash Receipts Records Samples

This section contains code samples for creating applications you can use with Cash Receipts records. Samples
include adding deposits and payments.

he Education Edge

Filz Edit Wiew Go Fawvaorites Toolz Help

4 Back % Forywand J Caommunity Services Inc, ™ + Cash Receipts =
Shortcuts ni Records
|F||1—' Home ;I Records I
b Deposits Deposits
Search For an existing deposit, Enter, view and update information For existing depasits, Create new
deposits, w
¥ Payrments
Search For an existing payment. Enter, view and update information For existing pavments, Create new
= pavments,
=y Export
o
.Q Reports
Efﬂail
|
dministration
Configuration
Dashboard
a Plug-Ins
(|
=15 Help
Blackbaud Systems | ;I

‘Welcome to Cazh Receipts Done

SAMPLE PROGRAMS

Adding a Cash Receipts Deposit

With the following code sample, you can create a new deposit.

213

ByVal dtPostDate As Date, ByVal sDescription As String)

I1System = bbBlackbaud CR_System

" IBankID = 3

" dtDepositDate = '09/28/2004"

" dtEntryDate = '09/28/2004"

sUserDefinedID = "CR™

" IStatus = staticentry_DepositStatus Open

" IPostStatus = staticentryPostStatusNotPosted
" dtPostDate = "09/30/2004"

" sDescription = "CR Test Deposit"

Dim oDeposit As CDeposit

Set oDeposit = New CDeposit

With oDeposit
-Init goSessionContext
-StaticEntryField(DEPOSITS_fld_SYSTEMOFORIGIN) = ISystem
-Fields(DEPOSITS_fld_BANKSID) = IBanklID
-Fields(DEPOSITS_fIld_DEPOSITDATE) = dtDepositDate
-Fields(DEPOSITS_fI1d_DATEENTERED) = dtEntryDate
-Fields(DEPOSITS_fI1d_USERDEFINEDNUMBER) = sUserDefinedID
-StaticEntryField(DEPOSITS_fld_DEPOSITSTATUS) = IStatus
-StaticEntryField(DEPOSITS_fld_POSTSTATUS) = IPostStatus
-Fields(DEPOSITS_fld_POSTDATE) = dtPostDate
-Fields(DEPOSITS_fld_DESCRIPTION) = sDescription
-Save
-CloseDown

End With

Set oDeposit = Nothing

End Sub

Private Sub Add_CRDeposit(ByVal ISystem As EST_SystemNames, ByVal 1BanklD As Long, _
ByVal dtDepositDate As Date, ByVal dtEntryDate As Date, ByVal sUserDefinedID As String, _
ByVal IStatus As EST DepositStatus, ByVal IPostStatus As EST_PostStatus, _

214

CHAPTER 5

Adding a Cash Receipts Payment

With the following code sample, you can create a new payment.

Private Sub Add_CRPayment(ByVal IDepositlD As Long, ByVal sPayerName As String,
ByVal dtTranDate As Date, ByVal cAmount As Currency, ByVal sSource As String,
ByVal sDescription As String, ByVal IReceiptStatus As EST ReceiptStatus,

ByVal sCreditAcctNum As String, ByVal sProject As String, ByVal sClass As String,

ByVal sTranCodel As String, ByVal sTranCode2 As String, ByVal cAmountBills As Currency, _
ByVal cAmountCoins As Currency)

" IDepositiID 19

sPayerName = "CR Payer"

" dtTranDate = "09/29/2004"

cAmount = 60

sSource = "'Test"

sDescription = "CR Payment™

IReceiptStatus = staticentry_ReceiptStatus NotYetPrinted
" sCreditAcctNum = "01-4050-04"

- sClass = "Unrestricted Net Assets"
" sProject = '1001"
- sTranCodel = "None"'

sTranCode2 = "'Spendable'
cAmountBills = 60
cAmountCoins = 0

Dim oPaymentHeader As CPaymentHeader

Set oPaymentHeader = New CPaymentHeader

With oPaymentHeader
- Init goSessionContext
.Fields(PAYMENTHEADERS_ fld_CRDEPOSITSID) = IDepositID
.Fields(PAYMENTHEADERS_ fld_TRANDATE) = dtTranDate
.Fields(PAYMENTHEADERS_ fld_AMOUNT) = cAmount
-Fields(PAYMENTHEADERS_ fId_DESCRIPTION) = sDescription
.StaticEntryField(PAYMENTHEADERS fld_RECEIPTSTATUS) = IReceiptStatus

With .PaymentComponents.Add
.StaticEntryField(PAYMENTS_fId_PAYMENTTYPE) = staticentry_PaymentType_ CRPayment
-Fields(PAYMENTS_fld_PAYERNAME) = sPayerName
-Fields(PAYMENTS_fld_SOURCE) = sSource
-Fields(PAYMENTS_fld_AMOUNT) = cAmount
End With

With .BaseComponent.Distribution.Add
.Fields(BBDISTRIBUTIONS_fld_CREDITACCTNUM) = sCreditAcctNum
.Fields(BBDISTRIBUTIONS_fld_AMOUNT) = cAmount
With .TransactionDistributions(bbTranDistType_Credit).Add

.Fields(BBTRANSACTIONDISTRIBUTIONS fld_GL7PROJECTSID) = sProject

.Fields(BBTRANSACTIONDISTRIBUTIONS fld_CLASS) = sClass

-Fields(BBTRANSACTIONDISTRIBUTIONS_fld_TRANSACTIONCODE1)

-Fields(BBTRANSACTIONDISTRIBUTIONS_fld_TRANSACT IONCODE2)

-Fields(BBTRANSACTIONDISTRIBUTIONS_fld_AMOUNT) = cAmount
End With

sTranCodel
sTranCode2

215

SAMPLE PROGRAMS

(Continued- page 2 of 2)

End With

-StaticEntryFie ld(PAYMENTHEADERS_ fld_PAYMENTMETHOD) _
= staticentry_PaymentMethods_Cash

-Fields(PAYMENTHEADERS_fld_AMOUNTBILLS) = cAmountBills

-Fields(PAYMENTHEADERS_fld_AMOUNTCOINS) = cAmountCoins

-Save
-CloseDown
End With
Set oPaymentHeader = Nothing

End Sub

Cash Receipts Reports Samples

This section contains code samples for creating applications you can use with Cash Receipts reports. There is a
sample for creating a cash receipts report.

fi% The Education Edge =[5 x]
File Edit “iew Go Favortes Toolz Help
4 Back & Forgvand J Community Services Inc. ™ + Cash Receipts ™
Shortcuts .g RE‘.DOI'tS
;I Reports I
¥ Bank Account Repoarts Eank
P Custom Reports Account
. i Reports
¥ Deposit and Receipt Reports =
b Pivat B ts Cuskam
ivot Repar Reparts
B b Transaction Reports P —
=y Expoart Receipt
E Reports
'g Reports Fivok
Reports
@ Mail Transackion
] Reparts

ﬁﬁg Banks

a Plug-Ins

-‘r‘: Help n
Blackbaud Systems | ;I

Wwelcome to Cash Receipts Done 4

216

CHAPTER 5

Creating a Cash Receipts Report
With the following code sample, you can create a cash receipts report.

Public Sub Create CR_Receipts_Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Service.CreateReportinstance(bbrep_CR_Receipts)
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property(REPORTPARAMETERNAMES_fId_NAME) = '"Cash Receipts Report Created From API"

"Description of the report
-Property(REPORTPARAMETERNAMES_fId_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES_fld_OTHERSEXECUTE) = True

"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False
End With

With oMetaData
"Set the report specific criteria

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_CashReceipts_DepositDate DateType).Fields_

(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_CashReceipts_ReceiptDate DateType).Fields_

(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_CashReceipts_EnteredOnDate DateType).Fields_

(REPORTPARAMETERVALUES_fld_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbRep_CashReceipts_DepositNumberFrom) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_CashReceipts_DepositNumberTo) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbRep_CashReceipts_ReceiptNumberFrom) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_CashReceipts_ReceiptNumberTo) .Fields(REPORTPARAMETERVALUES fld_NUMBER) =

-PropertyDataObject(bbrep_OffSet_ReportSpecific,
bbRep_CashReceipts_ShowPaymentDetails) .Fields

(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

-PropertyDataObject(bbrep_OffSet ReportSpecific,
bbRep_CashReceipts_IncludeAR) .Fields(REPORTPARAMETERVALUES_ fld_BOOLEAN) = True

217

SAMPLE PROGRAMS

(Continued- page 2 of 2)

-PropertyDataObject(bbrep_ OffSet_ReportSpecific, _
bbRep_CashReceipts_IncludeCR) .Fields(REPORTPARAMETERVALUES_fld_BOOLEAN) = True

End With

With oReport
.Save
-CloseDown

End With

Set oReport = Nothing
Set oMetaData = Nothing

End Sub

Student Billing Records Samples

This section contains code samples for creating applications you can use with Student Billing records. Samples
include adding products and billing items, clients, charges, credits, invoices, recurring invoices, returns, refunds,
deposits, and payments.

ﬂThe Education Edge

File Edit Wwiew Go

Favarites

Tools Help

4 Back % Forward J Community Services Inc. * Student Billing ™

|5]

[Records

update information for existing
products or billing items, Create
niew producks or billing ikems,

Students

Search For an existing student,
Enker, wiew and update
infFormation For exisking students,
Create new students,

-

-

Individuals

Search For an existing individual.
Enter, wiew and update
inFormation For exisking
individuals, Create new
individuals,

-

Organizations

Search Far an existing
organization. Enker, view and

Search For an existing charge.
Enter, wiew and update

infarmation For exisking charges.
“reate new charnes

-

-

-

information For exisking credits,
Create new credits,

Invoices

Search For an exisking inwoice,
Enter, wiew and update
information For exisking invoices,
Create new invoices.,

Returns

Search For an exisking return,
Wiew and update information For
existing returns,

Refunds

Search For an exisking refund.
Enter, wiew and update
infarmation For exisking refunds.
Create new refunds,

information For existing
payments., Create new
payments.

b Advance Deposits

Search for an exisking advance
deposit, Enker, view and update
information For existing advance
deposits, Create new advance
deposits,

-

Financial Aid

Search for an exisking financial
aid record, Enter, wiew and
update information For existing
financial aid records, Create new
financial aid records,

-

Billing Schedule
Search Far an existing Billing

Search Far an exisking caurse,
Yigw infarmatian, and update
hillimn Fess Far avizking coress

|F|H—' Haome
L .
~| Records I
b Products and Billing Iterns F Credits b Payments Products
Search For an existing billing item Search For an exisking credit, Search for an exisking pavment, and Eilling
or product, Enter, wiew and Enker, wiew and update Enter, view and update Items

update information for existing b Deposits schedule recard. Enter, view and Financial
organizations, Create new Search For an existing deposit. updake information For existing
oroanizations, Enter, wiew and update billing scheduls recards, Creats Eiling
information for existing deposits, new biling schedule records, Schedule
b Charges Create new deposits,
b Courses Courses

[

Students
Individuals
Jrganiza...
Charges
Credits
Inwoices
Returns
Refunds
Deposits
Fayments

Advance
Deposits

TR

WWhelcome o Student Billing

Dare

218

CHAPTER 5

Adding an Advance Deposit Record
With the following code sample, you can add an advance deposit record.

ByVal dtDueDate As Date, ByVal lltemIlD As Long, cAmount As Currency, _
ByVal sComment As String)

* IEA7RecordsiID = 5

" dtTranDate = '"09/24/2006"

* dtDueDate = '09/30/2006"

* lltemID = 60

® cAmount = 25

sComment = "Advance Deposit"

Dim oSBAdvanceDeposit As CSBAdvanceDeposit
Set oSBAdvanceDeposit = New CSBAdvanceDeposit

With oSBAdvanceDeposit
-Init goSessionContext
-Fields(SBADVANCEDEPOSIT_fld_EA7RECORDSID) = IEA7RecordslID
-Fields(SBADVANCEDEPOSIT_fld_TRANDATE) = dtTranDate
-Fields(SBADVANCEDEPOSIT_fld _DUEDATE) = dtDueDate
-Fields(SBADVANCEDEPOSIT_fld_SBBILLINGITEMSID) = IltemlD
-LoadDefaultsFromBillingltem (True)
-Fields(SBADVANCEDEPOSIT_fld_AMOUNT) = cAmount
-Fields(SBADVANCEDEPOSIT_fld_COMMENT) = sComment

-ApplyRecordDefaul ts
-Save
-CloseDown
End With
Set oSBAdvanceDeposit = Nothing

End Sub

Private Sub Add_SBAdvanceDeposit(ByVal IEA7RecordslID As Long, ByVal dtTranDate As Date, _

219

SAMPLE PROGRAMS

Adding a Billing Item

The following code sample illustrates how to add a flat rate billing item in Student Billing. You can also use this
sample to add other billing items by changing the object and its fields and required field entries.

Private Sub Add_SBBillingltem(ByVal IltemType As EST_BillingltemTypes, ByVal sltemID As _
String, ByVal IStatus As EST_ActiveStatus, ByVal sDescription As String, ByVal IDateDesc _

As EST_DateDescription, ByVal cAmount As Currency, ByVal bAllowUserEdit As Boolean, _
ByVal bTaxable As Boolean, ByVal 1SalesTaxID As Long, bAllowTermsDiscount As Boolean, _
ByVal bAssessFinanceCharge As Boolean, ByVal sComment As String)

" IltemType = staticentry BillingltemType_ FlatRate
" sltemlD = "Flat 1"

" IStatus = staticentryActiveStatus Active
sDescription = "Description”

IDateDesc = staticentry_DateDescription_AnyDate
" cAmount = 100

" bAllowUserEdit = True

bTaxable = True

" ISalesTaxID = 3

bAllowTermsDiscount = True

bAssessFinanceCharge = True

sComment = "Comment"

Dim oBillingltem As CBillingltem
Set oBillingltem = New CBillingltem

With oBillingltem
-Init goSessionContext, bbBlackbaud_SB_System

-StaticEntryField(BILLINGITEMS_fId_ITEMTYPE) = lltemType
-Fields(BILLINGITEMS_fId_ITEMID) = sltemlD
-StaticEntryField(BILLINGITEMS_fld_ACTIVESTATUS) = IStatus
-Fields(BILLINGITEMS_fId_DESCRIPTION) = sDescription
-StaticEntryField(BILLINGITEMS_fld_DATEDESCRIPTION) = IDateDesc
-Fields(BILLINGITEMS_fld_EXTENDEDAMOUNT) = cAmount
-Fields(BILLINGITEMS_fld_ALLOWUSEREDIT) = bAllowUserEdit
-Fields(BILLINGITEMS_fld_TAXABLE) = bTaxable
-Fields(BILLINGITEMS_fld_DEFAULTSALESTAXITEMHEADERID) = ISalesTaxID
-Fields(BILLINGITEMS_fld_ALLOWTERMSDISCOUNT) = bAllowTermsDiscount
-Fields(BILLINGITEMS_fld_ASSESSFINANCECHARGES) = bAssessFinanceCharge
-Fields(BILLINGITEMS_fld_DEFAULTCOMMENT) = sComment
-Save
-CloseDown

End With

Set oBillingltem = Nothing
End Sub

220

CHAPTER 5

Adding a Billing Schedule Record

With the following code sample, you can add a billing schedule record in Student Billing.

ByVal ICategory As EST_BillingltemTypes, ByVal lltemlD As Long, cAmount As Currency, _
ByVal sComment As String)

* IEA7RecordslID = 5

" dtTranDate = '09/24/2006"

ICategory = staticentry_BillingltemType AutomaticFees_SingleAmountAndSchedule
" IltemlD = 12

cAmount = 25

sComment = "Billing Schedule™

Dim oSBBillingSchedule As CSBBillingschedule
Set oSBBillingSchedule = New CSBBillingschedule

With oSBBillingSchedule
- Init goSessionContext
-Fields(SBBILLINGSCHEDULES_fld_EA7RECORDSID) = IEA7RecordsiD
.Fields(SBBILLINGSCHEDULES fld_TRANDATE) = dtTranDate
.StaticEntryField(SBBILLINGSCHEDULES_ fld_CATEGORY) = ICategory
-Fields(SBBILLINGSCHEDULES_ flId_SB7BILLINGITEMSID) = IltemlD

-.LoadDefaultsFromBillingltem (True)

.Fields(SBBILLINGSCHEDULES fld_AMOUNT) = cAmount
-Fields(SBBILLINGSCHEDULES fld_COMMENT) = sComment

-ApplyRecordDefaul ts
-Save
-CloseDown
End With
Set oSBBillingSchedule = Nothing

End Sub

Private Sub Add_SBBillingSchedule(ByVal 1EA7RecordsID As Long, ByVal dtTranDate As Date, _

221

SAMPLE PROGRAMS

Adding a Charge Record

With the following code sample, you can add charges to a student, individual, or organization record in Student
Billing.

Private Sub Add_SBCharge(ByVal IEA7RecordsID As Long, ByVal dtTranDate As Date, _

ByVal dtDueDate As Date, ByVal IPostStatus As EST_ PostStatus, ByVal dtPostDate As Date, _
ByVal ICategory As EST_BillingltemTypes, ByVal lltemID As Long, ByVal sUnit As String, _
ByVal dQuantity As Double)

* IEA7RecordsiID = 1

" dtTranDate = ""06/24/2006"

" dtDueDate = "06/30/2006"

* IPostStatus = staticentryPostStatusNotPosted

" dtPostDate = "06/30/2003"

ICategory = staticentry BillingltemType PerUsage
* lltemlD = 38

sUnit = "Box™

® dQuantity = 5

Dim oSBCharge As CSBCharge
Set oSBCharge = New CSBCharge

With oSBCharge
-Init goSessionContext
-Fields(SBCHARGES_fld_EA7RECORDSID) = IEA7RecordslID
-Fields(SBCHARGES_fld_TRANDATE) = dtTranDate
-Fields(SBCHARGES_fld_DUEDATE) = dtDueDate
-StaticEntryField(SBCHARGES_fld_POSTSTATUS) = lIPostStatus
-Fields(SBCHARGES_fld_POSTDATE) = dtPostDate
-StaticEntryField(SBCHARGES_fld_CATEGORY) = ICategory
-Fields(SBCHARGES_fld_SB7BILLINGITEMSID) = IltemlID
-LoadDefaultsFromBillingltem (True)
-Fields(SBCHARGES_fld_UNITOFMEASURE) = sUnit
-Fields(SBCHARGES_fId_QUANTITY) = dQuantity
-RecalculateExtendedAmount
-Save
-CloseDown

End With

Set oSBCharge = Nothing

End Sub

222

CHAPTER 5

Adding a Credit Record

With the following code sample, you can add credits to a student, individual, or organization record in Student
Billing.

Private Sub Add_SBCredit(ByVal 1IEA7RecordID As Long, ByVal dtTranDate As Date, _
ByVal IPostStatus As EST_PostStatus, ByVal dtPostDate As Date, _
ByVal ICategory As EST BillingltemTypes, ByVal lltemID As Long)

* IEA7RecordID = 5

" dtTranDate = '09/24/2006"

* IPostStatus = staticentryPostStatusNotPosted

" dtPostDate = '09/30/2006"

ICategory = staticentry BillingltemType FlatRate
* lltemlD = 37

Dim oSBCredit As CSBCredit
Set 0SBCredit = New CSBCredit

With oSBCredit
-Init goSessionContext
-Fields(SBCREDITS_fld_EA7RECORDSID) = IEA7RecordID
-Fields(SBCREDITS_fld_TRANDATE) = dtTranDate
-StaticEntryField(SBCREDITS_fld_POSTSTATUS) = lIPostStatus
-Fields(SBCREDITS_fld_POSTDATE) = dtPostDate
-StaticEntryField(SBCREDITS_fld_CATEGORY) = ICategory
-Fields(SBCREDITS_fld_SB7BILLINGITEMSID) = IltemlD
-LoadDefaultsFromBillingltem (True)
* Define whose charges the credit will apply to.
* The method below will default the payee to the record
" the charge is created for
-PayeeDistribution.LoadDefaul tPayees
-Save
-CloseDown

End With

Set oSBCredit = Nothing

End Sub

SAMPLE PROGRAMS

Adding a Deposit Record

With the following code sample, you can add a deposit.

223

ByVal dtPostDate As Date, ByVal sDescription As String)

® ISystem = bbBlackbaud SB_System

® IBankID = 3

" dtDepositDate = "09/28/2006"

" dtEntryDate = "09/28/2006"

* sUserDefinedID = ''SBD"

* IStatus = staticentry_DepositStatus Open

® IPostStatus = staticentryPostStatusNotPosted
" dtPostDate = '09/30/2006"

sDescription = "Test Deposit"

Dim oDeposit As CDeposit
Set oDeposit = New CDeposit

With oDeposit
- Init goSessionContext
.StaticEntryField(DEPOSITS_fld_SYSTEMOFORIGIN) = ISystem
.Fields(DEPOSITS_fld_BANKSID) = IBankID
-Fields(DEPOSITS_fld_DEPOSITDATE) = dtDepositDate
-.Fields(DEPOSITS_fld_USERDEFINEDNUMBER) = sUserDefinedID
.StaticEntryField(DEPOSITS_fld_DEPOSITSTATUS) = IStatus
.StaticEntryField(DEPOSITS_fld_POSTSTATUS) = IPostStatus
.Fields(DEPOSITS_fld_POSTDATE) = dtPostDate
-.Fields(DEPOSITS_fld_DESCRIPTION) = sDescription
-Save
-CloseDown

End With

Set oDeposit = Nothing
End Sub

Private Sub Add_SBDeposit(ByVal ISystem As EST_SystemNames, ByVal 1BanklD As Long, _

ByVal dtDepositDate As Date, ByVal dtEntryDate As Date, ByVal sUserDefinedID As String, _
ByVal IStatus As EST DepositStatus, ByVal IPostStatus As EST_PostStatus, _

224

CHAPTER 5

Adding a Financial Aid Record

With the following code sample, you can add a financial aid record in Student Billing.

ByVal IltemlD As Long, cAmount As Currency, ByVal sComment As String)

* IEA7RecordsiID = 5

" dtTranDate = '"09/24/2006"
" IltemID = 57

" cAmount = 25

sComment = "Financial Aid"

Dim oSBFinancialAid As CSBFinancialAid
Set oSBFinancialAid = New CSBFinancialAid

With oSBFinancialAid
-Init goSessionContext
-Fields(SBFINANCIALAIDS_fld_EA7RECORDSID) = IEA7RecordslID
-Fields(SBFINANCIALAIDS_fId_TRANDATE) = dtTranDate
-Fields(SBFINANCIALAIDS_fId_SB7BILLINGITEMSID) = IltemlD

-LoadDefaultsFromBillingltem (True)

-Fields(SBFINANCIALAIDS_fld_AMOUNT) = cAmount
-Fields(SBFINANCIALAIDS_fld_COMMENT) = sComment

-ApplyRecordDefaul ts
-Save
-CloseDown

End With

Set oSBFinancialAid = Nothing

End Sub

Private Sub Add_SBFinancialAid(ByVal 1EA7RecordslID As Long, ByVal dtTranDate As Date, _

225

SAMPLE PROGRAMS

Adding an Individual Record

With the following code sample, you can add a Student Billing individual. This sample also demonstrates how to
override the warning that appears if you create an individual record without adding a primary address.

Private Sub Add_SBIndividual (ByVal sFirstName As String, ByVal slLastName As String, _
ByVal sIndividuallD As String, ByVal sStatus As String,_

ByVal sGender As String, _ByVal sSSN As String, ByVal dtBirthDate As Date, _
ByVal sReligion As String, ByVal sEthnicity As String)

" sFirstName = "Individual First"
" sLastName = "Individual Last"

* siIndividuallD = "1"

" sStatus = "Active"

" sGender = "Male"

" SSSN = "123-45-6784"

" dtBirthDate = "09/12/1973"
sReligion = "Baptist"
sEthnicity = "Caucasian"

Dim olndividual As cSBIndividualRecord
Dim oWarningRule As IBBWarningRule

Set olndividual = New cSBIndividualRecord
With olndividual
-Init goSessionContext

.Fields(SBINDIVIDUALS_fld_FIRSTNAME) = sFirstName
.Fields(SBINDIVIDUALS_fld_LASTNAME) = sLastName
_Fields(SBINDIVIDUALS_fld_USERDEFINEDID) = sindividualID
.Fields(SBINDIVIDUALS_fld_BILLINGSTATUS) = sStatus
_Fields(SBINDIVIDUALS_fld_GENDER) = sGender
_Fields(SBINDIVIDUALS_fld_SSN) = sSSN
.Fields(SBINDIVIDUALS_fld_BIRTHDATE) = dtBirthDate
.Fields(SBINDIVIDUALS_fId_RELIGION) = sReligion
_Fields(SBINDIVIDUALS_fId_ETHNICITY) = sEthnicity

"This needs to be done if you want to override warning rule given regarding the _
"primary address if one does not exist

Set oWarningRule = olndividual

oWarningRulle .OverrideWarning(SBINDIVIDUAL_Warning_PrimaryAddress) = True

.Save
.CloseDown
End With

Set olndividual = Nothing
Set oWarningRule = Nothing
End Sub

226

CHAPTER 5

Adding an Organization Record

With the following code sample, you can add a Student Billing organization record. This sample also demonstrates
how to override the warning that appears if you create an individual record without adding a primary address.

Private Sub Add_SBOrganization(ByVal sOrganizationName As String, _
ByVal sOrganizationlD As String, ByVal sStatus As String, ByVal sClassification As String, _
ByVal sType As String, ByVal slndustry As String, ByVal sCFDA As String)

sOrganizationName = *"‘Organization Name*
sOrganizationlD = "1™

sStatus = "Active™

sClassification = "School™

sType = "College™

sindustry = "Arts"

" sCFDA = "CFDA 1"

Dim oOrganization As CSBOrganization
Dim oWarningRule As IBBWarningRule

Set oOrganization = New CSBOrganization
With oOrganization
-Init goSessionContext

-Fields(SBORGANIZATIONS_fld_ORGANIZATIONNAME) = sOrganizationName
-Fields(SBORGANIZATIONS_fld_USERDEFINEDID) = sOrganizationlD
-Fields(SBORGANIZATIONS_fIld_BILLINGSTATUS) = sStatus
-Fields(SBORGANIZATIONS_fIld_CLASSIFICATION) = sClassification
.Fields(SBORGANIZATIONS_fld_TYPE) = sType
-Fields(SBORGANIZATIONS_fId_INDUSTRY) = slIndustry
-Fields(SBORGANIZATIONS_fld_CFDA) = sCFDA

"This needs to be done if you want to override warning rule given regarding the _
"primary address if one does not exist
Set oWarningRule = oOrganization
oWarningRule.OverrideWarning(SBOrganization_Warning_PrimaryAddress) = True
-Save
-CloseDown

End With

Set oOrganization = Nothing
Set oWarningRule = Nothing

End Sub

227

SAMPLE PROGRAMS

Adding a Payment Record

With the following code sample, you can add payments in Student Billing.

Private Sub Add_SBPayment(ByVal IDepositlD As Long, ByVal IEA7RecordsID As Long, _

ByVal sSource As String, ByVal sComment As String, _

ByVal IReceiptStatus As EST ReceiptStatus, ByVal IReceiptAddressiD As Long, _

ByVal cAmount As Currency, ByVal cAmountBills As Currency, ByVal cAmountCoins As Currency)

" IDepositiD = 21

" IEA7RecordslID = 5

sSource = "Mail"

sComment = "‘Comment"

" IReceiptStatus = staticentry ReceilptStatus NotYetPrinted
" IReceiptAddressiD = 11

cAmount = 50

" cAmountBills = 50

cAmountCoins 0

Dim oPaymentHeader As CPaymentHeader
Set oPaymentHeader = New CPaymentHeader

With oPaymentHeader
-Init goSessionContext
-Fields(PAYMENTHEADERS_fld_CRDEPOSITSID) = IDepositlID
-Fields(PAYMENTHEADERS_fld_EA7RECORDSID) = IEA7RecordslID
-Fields(PAYMENTHEADERS_fld_SOURCE) = sSource
-Fields(PAYMENTHEADERS_fld_COMMENT) = sComment
-StaticEntryFie ld(PAYMENTHEADERS fld_RECEIPTSTATUS) = IReceiptStatus
-Fields(PAYMENTHEADERS_fld_RECEIPTADDRESSID) = IReceiptAddressiD

With _PaymentComponents.Add
-StaticEntryFie ld(PAYMENTS_fId_PAYMENTTYPE) = staticentry_PaymentType_ SBPayment
-ApplyClientDefaults
-Fields(PAYMENTS_fld_AMOUNT) = cAmount
-PayeeDistribution.LoadDefaul tPayees
End With

-Fields(PAYMENTHEADERS_ fld_AMOUNT) = cAmount

-StaticEntryField(PAYMENTHEADERS fld_PAYMENTMETHOD) = staticentry_
PaymentMethods_Cash

-Fields(PAYMENTHEADERS_fld_AMOUNTBILLS)
-Fields(PAYMENTHEADERS_fld_AMOUNTCOINS)
.Save
-CloseDown

End With

cAmountBills
cAmountCoins

Set oPaymentHeader = Nothing
End Sub

228

CHAPTER 5

Adding a Refund Record

With the following code sample, you can add a student record.

Private Sub Add_SBStudent(ByVal sFirstName As String, ByVal sLastName As String, _
ByVal sStudentlD As String, ByVal sStatus As String, _
ByVal sGradelLevel As String, ByVal sGender As String, _
ByVal sSSN As String, ByVal dtBirthDate As Date, _
ByVal sReligion As String, ByVal sEthnicity As String)

sFirstName = "Student First"
sLastName = "Student Last"
" sStudentlID = "1™

" sStatus = "Active"
" sGradelLevel = "PK"
" sGender = "Male™

" sSSN = "123-45-6783"

" dtBirthDate = "08/12/2001
sReligion = "Baptist"
sEthnicity = "Caucasian"

Dim oStudent As cSBStudent
Dim oWarningRule As IBBWarningRule
Set oStudent = New cSBStudent
With oStudent
-Init goSessionContext

-Fields(SBSTUDENTS_fId_FIRSTNAME) = sFirstName
-Fields(SBSTUDENTS_fld_LASTNAME) = sLastName
-Fields(SBSTUDENTS_fld_USERDEFINEDID) = sStudentlD
-Fields(SBSTUDENTS_fId_BILLINGSTATUS) = sStatus
-Fields(SBSTUDENTS_fIld_GRADELEVEL) = sGradelLevel
-Fields(SBSTUDENTS_fld_GENDER) = sGender
-Fields(SBSTUDENTS_fId_SSN) = sSSN
-Fields(SBSTUDENTS_fld_BIRTHDATE) = dtBirthDate
-Fields(SBSTUDENTS_fId_RELIGION) = sReligion
-Fields(SBSTUDENTS_fId_ETHNICITY) = sEthnicity

-StaticEntryField(SBSTUDENTS_ fld_BILLINGOPTION) = _
staticentry SBR_SB STU UseThisBillingOption_AssignToStudent

With .Statements.Add
-Fields(STATEMENT_fId_PAYERID) = 2
-StaticEntryField(STATEMENT_fld_STATEMENTTYPE) = _
staticentry_ StatementCharges_AllCharges

End With

"primary address if one does not exist

"This needs to be done if you want to override warning rule given regarding the _

229

SAMPLE PROGRAMS

Adding a student record, continued (page 2 of 2)

Set oWarningRule = oStudent
oWarningRule.OverrideWarning(SBStudent_Warning_PrimaryAddress) = True

-Save
-CloseDown
End With
Set oStudent = Nothing
Set oWarningRule = Nothing
End Sub

230

CHAPTER 5

Adding a Student Record

With the following code sample, you can add a student record.

Private Sub Add_SBStudent(ByVal sFirstName As String, ByVal sLastName As String, _
ByVal sStudentlD As String, ByVal sStatus As String, _
ByVal sGradelLevel As String, ByVal sGender As String, _
ByVal sSSN As String, ByVal dtBirthDate As Date, _
ByVal sReligion As String, ByVal sEthnicity As String)

sFirstName = "Student First"
sLastName = "Student Last"
" sStudentlID = "1™

" sStatus = "Active"
" sGradelLevel = "PK"
" sGender = "Male™

" sSSN = "123-45-6783"

" dtBirthDate = "08/12/2001
sReligion = "Baptist"
sEthnicity = "Caucasian"

Dim oStudent As cSBStudent
Dim oWarningRule As IBBWarningRule
Set oStudent = New cSBStudent
With oStudent
-Init goSessionContext

-Fields(SBSTUDENTS_fId_FIRSTNAME) = sFirstName
-Fields(SBSTUDENTS_fld_LASTNAME) = sLastName
-Fields(SBSTUDENTS_fld_USERDEFINEDID) = sStudentlD
-Fields(SBSTUDENTS_fId_BILLINGSTATUS) = sStatus
-Fields(SBSTUDENTS_fIld_GRADELEVEL) = sGradelLevel
-Fields(SBSTUDENTS_fld_GENDER) = sGender
-Fields(SBSTUDENTS_fId_SSN) = sSSN
-Fields(SBSTUDENTS_fld_BIRTHDATE) = dtBirthDate
-Fields(SBSTUDENTS_fId_RELIGION) = sReligion
-Fields(SBSTUDENTS_fId_ETHNICITY) = sEthnicity

-StaticEntryField(SBSTUDENTS_ fld_BILLINGOPTION) = _
staticentry SBR_SB STU UseThisBillingOption_AssignToStudent

With .Statements.Add
-Fields(STATEMENT_fId_PAYERID) = 2
-StaticEntryField(STATEMENT_fld_STATEMENTTYPE) = _
staticentry_ StatementCharges_AllCharges

End With

"primary address if one does not exist

"This needs to be done if you want to override warning rule given regarding the _

231

SAMPLE PROGRAMS

Adding a student record, continued (page 2 of 2)

Set oWarningRule = oStudent
oWarningRule.OverrideWarning(SBStudent_Warning_PrimaryAddress) = True

-Save
-CloseDown
End With
Set oStudent = Nothing
Set oWarningRule = Nothing
End Sub

Student Billing Reports Samples

This section contains code samples for creating applications you can use with Student Billing reports. Samples
include creating aged accounts receivable, open item, deposit list, and invoice reports.

EThe Education Edge M= E
File Edit Y“iew Go Favortes Toolz Help
4 Back = Forvard J Community Services Inc, ~ + Student Billing ~
Shorteuts .g R
eports
|Ft||1-' Hame =] Reports I
: b Action Repoarts Action
W Frecards b Analysis Reports Reparts
b Bank sccount Reports Analysis
‘-@Quew b D .) Reparts
— eposit and Receipt Reports ki
. B
. oot P Product and Billing Item Reparts F\i?ﬂunt
- *port ¥ Student/Individual /Organization Reports Reparts
¥ Transaction Reports Deposit and
= Receipt
— Reporks
E Mail Product and
7 Billing Item
% : Reparts
sl Barks o
g ban Student. .
Reporks
Administration Transackion
Reporks
nfiguration
Dashbaoard
a Plug-Ins
| - |
:- Help u
Blackbaud Systems | ll
Welcome to Student Billing Done

232

CHAPTER 5

Creating an Aged Accounts Receivable Report
With the following code sample, you can create an aged accounts receivable report.

Public Sub Create_SB AgedReceivable Report()
Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData
Set oReport = goFE_Services.CreateReportlnstance(bbrep_SB_AgedAccountsReceivable)
Set oMetaData = oReport
With oReport
-Init goSessionContext

"Set the name of the report
-Property(REPORTPARAMETERNAMES_fld_NAME) = ""Aged Receivable Report Created From API™

"Description of the report
-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?
-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True

"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False
End With
With oMetaData

"Set the report specific criteria

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_BaseAgingOn_DateType) . Fields(REPORTPARAMETERVALUES_ fld_NUMBER) _
= bbDATE_TODAY

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_TranDate DateType) .Fields(REPORTPARAMETERVALUES fld_NUMBER) = _
bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_DueDate_DateType) - Fie lds(REPORTPARAMETERVALUES_fld_NUMBER) _
= bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_PostDate_DateType) - Fields(REPORTPARAMETERVALUES_fld_NUMBER) _
= bbDATE_LASTYEAR

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_IncludeBalance) . Fields(REPORTPARAMETERVALUES_ fld_BOOLEAN) = True

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_BalanceAmount) . Fie lds(REPORTPARAMETERVALUES_fld_CURRENCY)

1l
(@)

SAMPLE PROGRAMS

Creating an Aged Accounts Receivable Report, continued (page 2 of 2)

233

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_BalancePeriod) . Fields(REPORTPARAMETERVALUES_fld_NUMBER)

1l
|
=

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_SBAgedAR_ReduceBalance) . Fields(REPORTPARAMETERVALUES_fld_NUMBER)

1l
(I

"Set the various Filters
"Set the Charge Filter

With _PropertyDataObject(bbrep_Offset Filters, bbrep_FilterParameter_FilterValues, _

valuenumber:=1, ValueSet:=CStr(bbFilterType SB_Charges))
-Fields(FILTERS_fId_INCLUDEOPTION) = bbFilteriIncludeOption_Range
-Fields(FILTERS_FId_ACTION) = bbFilterAttributeActionType_Include
-Fields(FILTERS_fld_FROMID) = 1
-Fields(FILTERS_fld_TOID) = 10
End With
End With
With oReport
-Save
-CloseDown
End With
Set oReport = Nothing
Set oMetaData = Nothing
End Sub

234

CHAPTER 5

Creating a Deposit Report
With the following code sample, you can create a deposit report.

Public Sub Create_SB DepositReport Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Services.CreateReportlnstance(bbrep_Common_DepositReport)
Set oMetaData = oReport

With oReport
-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fld_NAME) = "Deposit List Report Created From API™

"Description of the report
-Property(REPORTPARAMETERNAMES fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?
-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True

"Can others modify this report ?
-Property(REPORTPARAMETERNAMES_fld_OTHERSMODIFIY)
End With
With oMetaData
"Set the report specific criteria
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports_DepositDateType) .Fields(REPORTPARAMETERVALUES_ fld_NUMBER) _
= bbDATE_ALLDATES

False

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports EnteredOnDateType) -Fields(REPORTPARAMETERVALUES fld_NUMBER) _
= bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports PostDateType) .Fields(REPORTPARAMETERVALUES fld_NUMBER) _
= bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports_DepositNumberFrom) .Fields(REPORTPARAMETERVALUES fld_NUMBER) = 2

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports_DepositNumberTo) . Fields(REPORTPARAMETERVALUES_fld_NUMBER) = 5

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports_IncludeAmounts) .Fields(REPORTPARAMETERVALUES fld _BOOLEAN)

= True

235

SAMPLE PROGRAMS

Creating an Deposit Report, continued (page 2 of 2)

-PropertyDataObject(bbrep_OffSet ReportSpecific,_
bbrep_DepositReports_IncludeAmountsValue) .Fields _
(REPORTPARAMETERVALUES_fId_NUMBER) = 100

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbrep_DepositReports_IncludeSB) .Fields(REPORTPARAMETERVALUES_ fld_BOOLEAN) = True
End With
With oReport
-Save
-CloseDown
End With
Set oReport = Nothing
Set oMetaData = Nothing
End Sub

236

CHAPTER 5

Creating an Open Item Report
With the following code sample, you can create an open item report.

Public Sub Create_SB Openltem_Report()

Dim oReport As IBBReportlnstance
Dim oMetaData As IBBReportMetaData

Set oReport = goFE_Services.CreateReportlnstance(bbrep_SB_OpenltemReport)
Set oMetaData = oReport
With oReport

-Init goSessionContext

"Set the name of the report
-Property (REPORTPARAMETERNAMES_fld_NAME) = "Open ltem Report Created From API"

"Description of the report
-Property(REPORTPARAMETERNAMES _fld_DESCRIPTION) = "Fields set from the API"

"Can others execute this report ?

-Property(REPORTPARAMETERNAMES fld_OTHERSEXECUTE) = True
"Can others modify this report ?
-Property(REPORTPARAMETERNAMES _fld_OTHERSMODIFIY) = False

End With

With oMetaData
"Set the report specific criteria
-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_Openltem_ChargesOpenAsOf DateType).-Fields _
(REPORTPARAMETERVALUES_fId_NUMBER) = bbDATE_TODAY

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_Openltem_BaseOpenDateOn) .Fields(REPORTPARAMETERVALUES fld_NUMBER) = 2

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_Openltem_TransactionDate DateType).Fields _
(REPORTPARAMETERVALUES_fI1d_NUMBER) = bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_Openltem_PostDate DateType).Fields(REPORTPARAMETERVALUES_fld_NUMBER) _

= bbDATE_ALLDATES

-PropertyDataObject(bbrep_OffSet ReportSpecific, _
bbRep_Openltem_IncludeUnapplied) .Fields(REPORTPARAMETERVALUES fld_BOOLEAN) _
= False

End With

With oReport
-Save
-CloseDown

237

SAMPLE PROGRAMS

Creating an Open Item Report, continued (page 2 of 2)

End With
Set oReport = Nothing
Set oMetaData = Nothing
End Sub

8

CHAPTER 5

239

SAMPLE PROGRAMS

N_
D
5

CHAPTER 5

241

SAMPLE PROGRAMS

N.
S
N

CHAPTER 5

243

SAMPLE PROGRAMS

N_
D
£

CHAPTER 5

245

SAMPLE PROGRAMS

N_
D
5

CHAPTER 5

247

SAMPLE PROGRAMS

N_
D
&

CHAPTER 5

249

SAMPLE PROGRAMS

g

CHAPTER 5

251

SAMPLE PROGRAMS

3

CHAPTER 5

253

SAMPLE PROGRAMS

N
(6]
-b)

CHAPTER 5

255

SAMPLE PROGRAMS

3

CHAPTER 5

257

SAMPLE PROGRAMS

258

CHAPTER 5

Common Samples

This section contains code samples for creating API applications you can use to control information in more than
one Financial Edge program. Samples include code for creating notes, adding table entries, entering award
amounts from grantors, creating invoices, defining multiple accounts, and managing and viewing reports.

4@ Microsoft Visual Basic - FE_User - [FE_User_Macros (Code]]

FE Code ‘Wizard _

[References

o Fle Edit View Insen

Format Debug Bun Toolz Addin: Window Help

-3 X

0

With olcot
.Init go3essionContext
Load laiccountId

'set the various properties of the note
With .HNotepads,. Add

.Fields (NOTEPAD £1d Author) = sNoteluthor
.Fields (NOTEFAD fld Description] = sNoteDesc
.Fields (NOTEFPAD fld NotepadDbate] = dtlNoteDate
.Fields (NOTEFPAD fld NotepadType] = sMoteType
.Fields (NOTEPAD fld Title) = sNoteTitle
.Fields (NOTEFPAD fld ActuallNotes] = shctuallotes
.Fields (NOTEFAD fld Notes) = sNotes

End With

'Save the note details by saving the CGLAccount object
'"Talidations will take place on this statement

L Dave

.Closelovn
End With

N

e o 8 Lo I(General} j I(I]eclaratiuns] j
El : —
! sMotelesc = "Description of the Note™ ZI
Eeﬁ FE System ! dtlNoteDbate = Date
¢ B[] The Financial Ec ! sNoteType = "Internal”
Em@SFWﬁUES ! sNoteTitle = "Title of the note”
EwﬁgFEjvﬂem_ ! shotuzlMNotes = "This is just a samwple note®™
: ol FE_System_ ! sMotes = "Detailed Notes bbhout The Account®
=-&% FE_User
=3 Modules Dim cboet Lz CGlAccount
§ g FE User Mk Set olkecot = New ©Gliccount

SAMPLE PROGRAMS

Using Global Variables

The following code sample illustrates the basics of initializing and closing global variables.

259

"The APl and VBA samples use global variables like goFE _APIl, goFE Service,
"goCodeTablesServer, goSessionContext

"They are defined and used as follows:

Public goFE_Service As IBBUtilityCode

Public goFE_API As FE_API

Public goSessionContext As IBBSessionContext
Public goCodeTablesServer As CCodeTablesServer

“"Function to log into APl and create Global variables
Public Function LoginToAPI(Optional ByVal sUsername As String, Optional ByVal spwd As
String) As Boolean
Dim bInit As Boolean

Set goFE_API = New FE_API
goFE_API .SignOutOnTerminate = True

IT Len(sUsername) And Len(spwd) Then

bInit = goFE_API.Init("""", sUsername, spwd)
Else

blnit = goFE_API.Init('"", "supervisor', "admin')
End If

IT blnit Then
Set goSessionContext = goFE_API .SessionContext
Set goFE_Service = New FE_Services
goFE_Service. lnit goSessionContext
Set goCodeTablesServer = New CCodeTablesServer
goCodeTablesServer. Init goSessionContext

End If

LoginToAPI = blnit

End Function

“Function to release Global variables
Public Sub ReleaseGlobalObjects()
IT Not goFE_Service Is Nothing Then
goFE_Service.CloseDown
Set goFE_Service = Nothing
End If

IT Not goCodeTablesServer Is Nothing Then
goCodeTablesServer.CloseDown
Set goCodeTablesServer = Nothing

End If

IT Not goSessionContext Is Nothing Then
Set goSessionContext = Nothing

End If

IT Not goSessionContext Is Nothing Then
Set goSessionContext = Nothing

260

CHAPTER 5

(Continued- page 2 of 2)

End If

IT Not goFE_API Is Nothing Then
Set goFE_API = Nothing
End If

End Sub

*NOTE: These variable have been defined with global scope for convenience. You can define
" them with local or modular scope in your program/application.

Using Financial Edge as an Active Server Page

This code sample, frmAPSamples.frm, is located in the Help\Samples\Advanced_Samples\API\Samples\AP
folder of the The Financial Edge installation directory. This sample demonstrates how you can access

The Financial Edge as a server and use its functionality through your browser. When using The Financial Edge
as a server, you should:

» Have The API installed on your server machine.

* Set the optional parameter ‘lAppMode’ to “amServer” or “1” when you init the API. The default is
“amStandAlone”. This parameter tells The Financial Edge whether it is being run as a server or a standalone.

» Add the following line above the <head> tag to include the type library. This enables you to use the constant
names and Intellisense.

<I--METADATA TYPE="TypeLib"™ FILE="C:\program Files\The FinancialEdge\typelib\ _
bbafnapi7.tlb"” -->

If you don’t know the path of the Typelib, you can specify the uuid parameter with the GUID inside curly
brackets {}.

» Supply the username, password, and database number in the init. The API cannot initialize without these
parameters, and it does not ask for them at a later stage (as in a standalone installation).

» Make sure no one logs into The Financial Edge on the server machine using the same username and password
you use.

» Ensure SQL Server is kept running and connected to The Financial Edge database on the server machine.
Failure to do so will result in performance lag.

» Use the FE_ComHelper.dll if you are using version 11S4. 11S versions 5 and higher permit casting objects to their
supported interfaces, but 11S4 does not. To support this in 11S4, we have provided a provided a helper .dll called
FE_ComHelper. The cQuerylnteface class in FE_ComHelper has a method called getinterface which takes the
GUID of an interface and object of a Class as its parameters. The GUID constants are available in the object
browser (i.e. IBBTopObject_Guid). The getinterface function casts your object to the specified interface and
returns it as the function value. (See the ASP Sample for details.)

» Use Server.CreateObject ("DIIName.ClassName") to create an object of a class. All The Financial Edge objects
should be available from the AFNAPI7.dll. You can also use The Financial Edge Services.GetProgID...
functions to return the correct GUIDs.

» Access the SessionContext from the API object.

» Make sure the ASP account, usually "lUSR_machinename", has full rights to the <The Financial Edge
installation directory>\SysDB folder.

261

SAMPLE PROGRAMS

Adding a Note to a Record

This sample illustrates adding a notepad to an account, but you can alter this code to add notepads to any parent
object that supports notes.

Friend Sub createNote(ByVal lIAccountld As Long, ByVal sNoteAuthor As String, _
ByVal sNoteDesc As String, ByVal dtNoteDate As Date, _
ByVal sNoteType As String, ByVal sNoteTitle As String, _
ByVal sActualNotes As String, ByVal sNotes As String)

“sNoteAuthor = *John Wright™

"sNoteDesc = "‘Description of the Note"
"dtNoteDate = Date

"sNoteType = "Internal™

"sNoteTitle = "Title of the note"
"sActualNotes = "This iIs just a sample note"

"sNotes = "Detailled Notes About The Account"

Dim oAcct As CGlAccount
Set oAcct = New CGIlAccount

With oAcct
-Init goSessionContext
-Load lAccountld
"set the various properties of the note
With _Notepads.Add
-Fields(NOTEPAD_fld_Author) = sNoteAuthor
-Fields(NOTEPAD_fIld_Description) = sNoteDesc
-Fields(NOTEPAD_fld_NotepadDate) = dtNoteDate
-Fields(NOTEPAD_fld_NotepadType) = sNoteType
-Fields(NOTEPAD_fId_Title) = sNoteTitle
-Fields(NOTEPAD_fld_ActualNotes) = sActualNotes
-Fields(NOTEPAD_fld_Notes) = sNotes
End With
"Save the note details by saving the CGLAccount object
*Validations will take place on this statement
-Save
-CloseDown
End With
Set oAcct = Nothing
End Sub

262

CHAPTER 5

Finding a Code Table Entry ID

This code sample returns a code table entry ID for a specified code table.

"This function returns the ID for the CodeTableEntry in the CodeTable specified by its ID
“(ICodeTableType)
"e.g. ctnumGLClass or ctnumFADisposalMethod

Friend Function getldFromCodeTable(_
ByVal ICodeTableType As Long, ByVal sEntry As String) As Long
Dim oTableEntries As CTableEntries
Set oTableEntries = New CTableEntries

Dim oTableEntry As CTableEntry

With oTableEntries
-Init goSessionContext, ICodeTableType, True

For Each oTableEntry In oTableEntries
IT oTableEntry.Fields(tableentry fld_DESCRIPTION) = sEntry Then
getldFromCodeTable = oTableEntry.Fields(tableentry_ fld_TABLEENTRIESID)
Exit For
End IFf
Next
End With
oTableEntry.CloseDown
oTableEntries.CloseDown
Set oTableEntry = Nothing
Set oTableEntries = Nothing
End Function

Finding an Attribute Value ID
This code sample returns an attribute value ID for a specified attribute type.

"This function returns the ID of the Attribute Value of the Attribute Type whose ID is
"specified by IAttributeType

Friend Function getAttributeTypeld(ByVal sAttribDesc As String, _
ByVal l1AttributeType As Long) As Long
Dim IAttribTypeld As Long
Dim oAttribServer As CAttributeTypeServer
Set oAttribServer = New CAttributeTypeServer

With oAttribServer
-Init goSessionContext, lIAttributeType
IAttribTypeld = .getAttributeTypeld(sAttribDesc)
-CloseDown

End With

Set oAttribServer = Nothing

getAttributeTypeld = IAttribTypeld

End Function

263

SAMPLE PROGRAMS

Using the Award Status Manager

The Award Status Manager is a sample plug-in that illustrates how you can create custom forms to enter
information into The Financial Edge. With this plug-in, you can add, view, and modify the status of grant awards
from one place. You can add grants for which you have applied, log the expected award amount, and enter the
actual award amount as a project record when you receive the grant. Using buttons at the bottom of the Award
Status Manager page, you can also easily add budget information and create reports and batches. To install the
Award Plug-in, browse to the Financial Edge Help/Samples/Advanced_Samples/API/Plug-Ins/AwardPlugin
folder. Copy the AwardPlugin.dll, AwardPlugin.mdb, and docAwardPlugin.vbd files, then paste them into

The Financial Edge/Plugins folder.

> Using the Award plug-in

1. To use the Award plug-in, on the navigation bar of The Financial Edge, click Plug-Ins. The Plug-Ins page
appears.

2. Click Award Status Manager. The Award Status Manager screen appears.

&% The Financial Edge

File Edit Yiew Go Favoritez Toole Help
4 Back # Forward I Community Services Inc, ™ « General Ledger ~
Shortouks :
ey 4 Award Status Manager
@ . Alpha Research Institute
&y Query
= AR Account: 1-1300-00 - Grantz Receivable
= Grant Fevenue Account: 01-4100-03 - Grant Revenue-Program
= g Expork
B Pre-fward Past-daward
fward Murnber | Mame Arnounk Award Murber | Marne Arnounk
‘\" Journal Entry
e Allocation Sets
drninistration
Configuration
ashbaoard
il Flug-Ins
7 Help n Total § Total $
Manthly Reports Config | Ty | Declined | Avvardedd | Budcet Repotts | Creste Batch |
weh Links
“welcome to General Ledger |

264

CHAPTER 5

3. Click Config. The Configuration Options screen appears.

AR Account:

Ok

Grant Revenue Account; I ﬁl

[v Create &ward # Attribute

v Create Project Status
[Open/Declined/Approved)

Confguraion Options |

[&

| Cancel |

4. Inthe AR Account field, enter an accounts receivable account number for the award.

In the Grant Revenue Account field, enter a revenue account number.

6. Mark Create Award # Attribute and Create Project Status (Open/Declined/Approved). These
checkboxes automatically create a project attribute with three possible field entries describing the status of

the award.

7. Click OK. The Configuration Options screen closes and the Award Status Manager page appears with the

new award information in the heading.

The Financial Edge [Sample D ata)

File Edit Yiew Go Favortes Tools Help

4 Back % Eoryand I Comrnunity Services Inc, + General Ledger =

Shortouts

(@ Query

S

=
:Il:: l (EXPIEEE
o

“'. Journal Entry

¢ & Allocation Sets
§

i

AR Account: 01-1200-00 - Grants Receivable
Grant Revenue Account: 01-4100-03 - Grant Revenue-Fragram

Award Status Manager
Alpha Research Institute

Pre-fward

Post-fward

Award Number | Mame Amount

Award Number

IMarme

Arnournt

8. To change the configuration for this award, click Config.

9. After you have configured the Award plug-in, to create a new award, click New. The Create New Project

SCreen appears.

Coooto Now Proct |
Aaard Humber: I
Marme: I
Arnaut: I
Ok | Cancel

10. In the Award Number field, enter a number for the award.

11. Inthe Name field, enter a project name.

12.

13.

14.

15.

16.

17.
18.

265

SAMPLE PROGRAMS

In the Amount field, enter the project amount.

To create a new Financial Edge project, click OK. A new General Ledger project record opens with the
information for the new project. For information about adding project records, see The Financial Edge
help file.

After you add information to the new project, click Save and Close to save the project and return to the
Award Status Manager page.

All projects with an open status appear in the Pre-Award grid. If a grant is not awarded, you can select the
project and click Declined to remove the project from the list. If the grant is awarded, select the project and
click Awarded to move the project to the Post-Award grid.

To add budget information, select a project and click Budget.
To view an income statement report for a project, select a project and click Reports.

To create batch entries for projects, click Create Batch. The Financial Edge creates journal entries for all
the projects, unless they have already been entered. Pre-awards are entered as encumbrances, and declined
awards are entered as reversed encumbrances.

Using the Report Manager

The Report Manager is a plug-in you can use to manipulate all Financial Edge reports from a single location
without having to toggle between programs. With the Report Manager you can create a new report, open an
existing report, preview, or print any report in The Financial Edge. To install the Report Manager, browse to the
Financial Edge Help/Samples/Advanced_Samples/API/Plug-Ins/ReportManager folder. Using the
FEReportManager.vdb file, in Visual Basic, select File, Make FEReportManager.dll. After Visual Basic creates
the .dll file, copy both the FEReportManager.dll and docReportManager.vbd files, then paste them into

The Financial Edge/Plugins folder.

» Using the Report Manager plug-in

1.

To use the Report Manager plug-in, on the navigation bar of The Financial Edge, click Plug-Ins. The
Plug-Ins page appears.

266
< CHAPTER 5

2. Click Award Status Manager. The AwardPlugin screen appears.

% The Financial Edge
File Edit Yew Go Favortes Tool: Help
4 Back & Foryand I Community Services Inc, = + General Ledger ™
Shorkouks a
=y Report Manager
(@':!UEF':.-' e FHepart | [Hpen Hepart | Preview Repart | Print Report |
é Report categories by zpstem Available reports
)y Expork
o General Ledger Feport Hame I Created By I Lazt Fiun |
Accountz Payable
Fired &zzets
‘v Journal Entry
& sF\"Eu:Eltil:lrl Setks
Adminiskr akion
nfiguration
} Dashboard
m Flug-Ins =
Maonthly Reparts
Web Links
|Welcome to General Ledger | i

3. Inthe grid, in the Report categories by system column, double-click a program name to expand the list of
reports.

4. From the expanded list, select a report type. Existing reports of that type appear in the Available Reports
column.

5. To create a new report, click New. The New <Type> Report screen appears. For information about
creating specific reports, see The Financial Edge help file.

6. To open an existing report, in the Available Reports column, select a report and click Open.
7. To preview a report, select a report and click Preview Report.
8. To print a report, select a report and click Print Report.

Using the Report Viewer

The Report Viewer is a plug-in that demonstrates how you can integrate The Financial Edge and Microsoft Office
to open a General Ledger report or a purchase order history report from an Excel spreadsheet. To use the Report
Viewer, browse to the Help/Samples/Advanced_Samples/API/Samples/SamplesinXLS folder and copy the
Samples.xls file. Then, paste Samples.xls in the Financial Edge/Plug-ins folder. Open the Samples.xls and select
the Reports Viewer tab. Cells with red flags contain helpful instructions for entering information in the

spreadsheet.

SAMPLE PROGRAMS

267

To view a General Ledger report, enter an account number or a range of accounts, then click View Report. To
view a purchase order report, enter a vendor name or vendor ID, then click View Report.

Ed Microsoft Excel - Sample.xls
J File Edit View Insert Format Tools Data Window Help Acrobat == =]
|3
DE2EHa @RY FBRT v @3 A4 5 WP 0 -0,
| i -0 - B IU S=E=E 8%, W% EE - 5-A
B15] =
A | B | C o, E | F | G | H | | =

1 View General Ledger Report —
2

| 3 | Account #

| 4 |Selected Account 1 |

=)

| 65 | Fram Account # To Account #

| 7 |Range of Account 1 |

(5

EN Wigwy Report |

10

|11 | Purchase Order History Report

12

|1 13| ‘Yendor Name [|

14 o

15 Vendor Id |

(16

| 17 | wiewy Report |

18

19

Ed

21

22

[4 |4 [M[:Reports Yiewer Invoice Entry Form 4 Auto Refreshing Excel Sheet / |4] .
rReady 1 I UM | —

Using the Invoice Entry Form

The Invoice Entry form, another example of the integration possible between Excel and The Financial Edge, is
located in the Samples.xls file in the Advanced Samples/API/Samples/SamplesinXLS folder. With this form, you
can speed the process of entering multiple invoices by entering up to 15 invoices on a single Excel spreadsheet and
then saving them to The Financial Edge database with just one click. To use the Invoice Entry Form, copy and
paste the Samples.xls file into the Financial Edge/Plug-ins folder. Then, open the file with Excel and select the

Invoice Entry Form tab.

268

CHAPTER 5

To distribute the invoices, you can either use the vendor’s default distribution, or to create a new distribution, select
a row and click Change Distribution. To save the invoices to The Financial Edge database and clear the
spreadsheet, click Save Invoices. To delete all invoices without saving, click Clear Cells.

EZ Microsoft Excel - Sample. xls

J@ Filz Edit “iew |nzert Format Tool: Data Window Help Acrobat _|E|5|

DBEE SRY|BBS| o o

@ = A4 -0,

J Courier New -8 | B I U ”EEE | $ %, a0 *; l - - & T
I
A BE_| ¢ | D | E . F 1G] H =

1 Creste Hatch Add Multiple Invoices

2 Tumber Attritute
| S |
| 4 | Batch: I:l Total Invoice Amount:

5

5] VYendor Hame Invoice Ho. | Invoice Date Due Date Description " Invoice Amt

7

] Change Distrioution
| 9 | Change Distrioution
|10 | Change Distrioution
|11 | Change Distribution
| 12 | Change Distribution
1 13 | Change Distrioution
| 14 | Change Distrioution
| 15 | Change Distrioution
| 16 | Change Distrioution
|17 | Change Distrioution
| 15 | Change Distrioution
119 | Change Distribution
| 20 | Change Distribution
| 21 | Change Distrioution

22 Change Distrioution

M|/ Reports Yiemer) Invoice Entry Form Auko Refreshing Excel Sheet

Ready Il [[[NUBA | rr

269

SAMPLE PROGRAMS

Defining Multiple Accounts

With the Define Multiple Accounts form, you can increase efficiency by creating multiple accounts for

The Financial Edge from an Excel worksheet. To use the Define Multiple Accounts form, browse to the Financial
Edge Help/Samples/Advanced_Samples/API/Samples/SamplesinXLS folder and copy the Samples.xls file. Then,
paste Samples.xls in the Financial Edge/Plug-ins folder. Open the Samples.xls file with Excel and select the Define
Multiple Accounts tab. Cells with red flags contain helpful instructions for entering information in the spreadsheet.

E Microsoft Excel - Sample.xls

J@ File Edit “igw |nzert Format Tool: Data Window Help Acrobat

PR - R N T TR T I S

SE=E=E8%, B3/EE-5-A,

A E] | C | D E | F
Define Multiple Accounts

Account Humber

Description

Add Hotes

Start Here ==

00-0850-00

new account

created from Excel file

[N S (S (PR PR (PP DY Y RS
EEEEEEE R FE R SRR

rj(| 4 [» [#i[Define Multiple Accounts ¢ Reports Yiewer £ Invoice Entry Form £ Auta Refreshing |4 |

Ready Il [[[NUBA | r

After you enter an account number and description (notes are optional), click a cell in the Add Notes column and
press TAB. A New Account screen appears with the information you entered. You can enter additional information
about the account, or, to save the account and close the New Account screen, click Save and Close.

VBA Samples

The Financial Edge includes several VBA sample programs installed in The_Financial_Edge\Help\Samples\VBA
folder. These samples basically consist of two different samples — a notepad sample and a spelling checker
application you can use on notepads.

The Financial Edge includes the following VBA code samples:

Sample Format Description

Notepad Visual Basic 6.0 This macro creates notepads without having to open a parent
object record.

SpellCheck Visual Basic 6.0 This macro checks for spelling errors on notepads.

Additionally, this guide contains VBA code samples for creating new business rules and macros.

270

CHAPTER 5

Validating Dates

This code sample verifies that all dates entered on an object fall within two years of today’s date.

Instructions:
1. InaVBA module, add the ValidDates function.
2. Add the following code to the BeforeSave event of the object you want to validate:

bCancel = Not ValidDates(oFAAsset)
"Change to pass in the appropriate object

The following code sample illustrates using the ValidDates function to require a date within the next two years:

Public Function ValidDates(oDataobject As IBBDataObject) As Boolean

"Can add to the BeforeSave event of any object to validate that all object dates are within
"2 years of today.

Dim oBBMetaField As IBBMetaField
Set oBBMetaField = oDataobject

Dim 1 As Long
Dim sTemp As String
Dim bValid As Boolean

bvalid = True

For 1 = 1 To oBBMetaField.Count “Really Field Count
With oBBMetaField
IT _FormatDescriptor(l) = fmtDATEMDY Then
IT oDataobject.FieldlsDirty(1)Then
sTemp = RTrim$(oDataobject.Fields(l))
IT Len(sTemp) > O Then
IT Abs(DateDiff("'yyyy", sTemp, Date$)) > 2 Then
"IT the date iIs not within 2 years railse an error
IT MsgBox(*'The field " & .DisplayText(l) & * is not within 2 _
years of today. Save the record anyway?", _
vbYesNo) = vbNo Then
bvalid = False
Exit For
End If
End If
End If
End IFf
End If
End With
Next 1
Set oBBMetaField = Nothing

ValidDates = bValid
End Function

271

SAMPLE PROGRAMS

Viewing Query Results in HTML

The following code sample uses query results to create an HTML page you can access from the Help menu:

Private Declare Function ShellExecute Lib "shell32.dl11" Alias "ShellExecuteA" _

(Byval hwnd As Lo
ByVal IpParamete
As Long

ng, ByVal IpOperation As String, ByVal IpFile As String, _
rs As String, ByVal IpDirectory As String, ByVal nShowCmd As Long) _

Public Sub PublishToWeb(o As 1BBQueryRow)

On Error GoTo eh
If 0.BOF Then
Static IF
IT IFil <
Close
End 1f

il As Long
> 0 Then
IFil

IFil = FreeFile
Open "c:\WebQuery.htm' For Output As #IFil

Print #IF
Print #IF
Print #IF
Print #IF
Print #IF
Print #IF

Elself o.EOF

Print #IFil,

Print #IFil,

Print #IFil,
<HR>

Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,
Print #IFil,

il, "<HTML>"

il, "<HEAD>"

il, "</HEAD>"

il, "<BODY>"

il, "<XML ID=QueryData>"
il, "<QUERYROWS>"

Then

""</QUERYROWS>""

"</ XML>"

"Query Results Page

"<< Prev Page"
"' "

"Next Page >>"
"<SCRIPT Language=VBSCRIPT>"

"Sub NextPage_OnClick(Q)"

"tblData.nextPage"

"End Sub™

"Sub PrevPage_OnClick(Q)"

"tblData.previousPage"

"End Sub™

"'</SCRIPT>"

"<TABLE Border=1 ID=tblData DATAPAGESIZE=15 border=1 _

style="Font - family: tahoma®™ DATASRC=#QueryData>"

Print #IFil,
Dim I As Long

For 1 =1 To
Print #IF

"<THEAD style="background-color:maroon;color:white">"

o.FieldCount
il, "<TH>" & o.FieldName(l) & "'</TH>"

272

CHAPTER 5

(Continued- page 2 of 2)

Next |

Print #IFil, "</THEAD>"
Print #IFil, "<TR>"
Dim sFld As String
For 1 = 1 To o.-FieldCount
sFId = Trim$(UCase$(o-FieldName(l)))
Print #IFil, "'<TD valign=Top>_
</TD>"
Next 1

Print #IFil, "</TR>"
Print #IFil, "</TABLE>"
Print #IFil, '</BODY>"
Print #IFil, "</HTML>"

Close IFil

On Error Resume Next

Shel lExecute FE_Application.SessionContext._MainForm_hwnd, *Open*, _
*c:\WebQuery.htm", ", "c:\", 1

On Error GoTo O

Else
" Write each row out
Print #IFil, "<QUERYROW>"
For 1 = 1 To o.FieldCount

Print #IFil, "<" & fixField(o-FieldName(l)) & ">" & FixDataField(o.Field(l)) _

& "</ & FixField(o-FieldName(l)) & ">"

Next 1
Print #IFil, "</QUERYROW>"
End If
Exit Sub
eh:
MsgBox "Error: ' & Err.Description
Exit Sub
End Sub

Private Function fixField(ByVal s As String) As String
Dim stemp As String
stemp = UCase$(Trim$(Replace(s, ™ ", "_™)))
fixField = UCase$(Trim$(Replace(stemp, "/, "_"™)))
End Function

Private Function FixDataField(ByVal s As String) As String
FixDataField = UCase$(Trim$(Replace(s, "&", "_')))
End Function

273

SAMPLE PROGRAMS

Calculating GST and PST Amounts

> With this sample, located in the Advanced Samples folder, you can calculate GST and PST tax rates for
Australia and Canada. Setting Up the Sample

1.

Before you can run this code, you must add two forms, Frm_Tax and Frm_InvoiceAmount, to your VBA
code. You can locate these forms in the Financial Edge\Help\Advanced Samples\VBA\GST folder. To add
the forms, in the Project Explorer, expand the FE System folder and select the Forms folder. Right-click
and select Import File, then browse to the forms files.

Create the following macro (in FE_System_Macros) to setup your GST/PST values:

Public Sub DefineTax()
frm_Tax.Show vbModal
End Sub

3. Add the code in FE_System_Object_Code to FE_System_Object_Code.
4. Add the following to the APInvoice_BeforeOpen Event:

Dim oAPRecord As CAPInvoice
Set oAPInvoice = oRecord
Hand1eGST oAPInvoice

Set oAPInvoice = Nothing

5. Copy the GST.MDB to the Plugins folder.

Add a standard code UlOpening and UIClosing Event:

Private Sub FE_Application_UlClosing(bCancel As Boolean)
ReleaseFEGlobalObjects True
End Sub

Private Sub FE_Application_UlOpening()
CreateFEGlobals FE_Application.SessionContext
End Sub

7. Add a reference to the Microsoft DAO.
8. To use the sample, see “Using the Sample” on page 274.

274

CHAPTER 5

» Using the Sample
1. To define GST/PST amounts and a refund account, run the Define Tax macro.
Define Tax

GST Rate:

G5T Refund Rate:

——
——
PsTRate: |
—

PST Refund Rate:

Refund Account: I

[" Create attribute Types

Ok | Cancel |

2. To automatically calculate GST and PST amounts when adding new invoices, run the Enter Invoice
Amount macro. When you enter a vendor name and invoice amount, the macro calculates the GST and
PST amounts based on defined rates.

Enter Invoice Amount

Yendor Marme: |

Total Invoice Amount: I
GST Amount: I
PST Amount: I

Ck | Cancel |

SAMPLE PROGRAMS

Sending a Warning Message for Large Invoices

275

With this macro, if a user creates an invoice exceeding $1000, the program automatically generates an email to

your organization’s CFO.

"Add the following line to the APInvoice_AfterSave Event:
"DoBiglnvoiceEmail oRecord

Public Sub DoBiglnvoiceEmail(oRecord As Object)

Dim oAPInvoice As CAPInvoice
On Error GoTo ErrHandler
Set oAPInvoice = oRecord

If oAPInvoice.Fields(APINVOICES fld_INVOICEAMOUNT) > 1000 Then
Dim oOutlook As Outlook.Application
Set oOutlook = CreateObject(*'Outlook.Application'™)

Dim oMailltem As Mailltem
Set oMailltem = oOutlook.Createltem(olMailltem)

oMailltem.To = "CFO@YourOrganization.com"
oMailltem.Subject = "Large Invoice Alert"

Dim oApVendor As cAPVendor

Set oApVendor = New cAPVendor

oApVendor. Init goFE_Sessioncontext

oApVendor.Load oAPInvoice.Fields(APINVOICES_ fld_AP7VENDORSID), True
Dim sTemp As String

sTemp = "An invoice for " & oApVendor.Fields(_
APVENDORS_fld_VENDORNAME_FORDISPLAY) & " has just been added _
in the amount of " & Format$(oAPInvoice.Fields(_
APINVOICES_fld_INVOICEAMOUNT), "currency™) & "."

sTemp = sTemp & ™ The invoice description is _

""" & OAPInvoice.Fields(APINVOICES_flId_DESCRIPTION) & """

oMailltem.Body = sTemp

oMaillItem.Display

"Shows the email, so user can see it
“"oMai l Item.Send

"Sends the email without user intervention

Set oMailltem = Nothing
Set oOutlook = Nothing

oApVendor .CloseDown
Set oApVendor = Nothing
End If

276

CHAPTER 5

(Continued- page 2 of 2)

Set oAPInvoice = Nothing
On Error GoTo O
Exit Sub
ErrHandler:
Dim sErr As String
SErr = Err._Description
On Error GoTo O
"< place your custom error handling code here >
MsgBox "Error processing DoBiglnvoiceEmail - ™ & SErr
IT Not oApVendor Is Nothing Then
oApVendor .CloseDown
Set oApVendor = Nothing
End If
Set oAPInvoice = Nothing

End Sub

Requiring Approval for Large Purchase Orders

This sample adds an action to a specified user if another users adds a purchase order exceeding a specific amount.
You can use this security feature to require your CFO’s approval for large purchase orders.

Instructions:
1. Add the AddActionforPOApproval function to a VBA module

2. Add the following code to the APPurchaseOrder_BeforeSave event:

AddActionforPOApproval oAPPurchaseOrder

277

SAMPLE PROGRAMS

The following code sample illustrates requiring approval for purchase orders exceeding $500:

Public Sub AddActionforPOApproval (0APPurchaseOrder As CAPPurchaseOrder)

With oAPPurchaseOrder
IT _Fields(APPURCHASEORDERS_fld_PURCHASEORDERTOTAL) > 500 Then
IT goFE_Service.UserGetName(goSessionContext.CurrentUserlID) = *Joe"™ Then
Dim oVendor As cAPVendor
Set oVendor = New cAPVendor
oVendor.Init goFE_Sessioncontext
oVendor.Load .Fields(APPURCHASEORDERS_fId_AP7VENDORSID)
With oVendor
With _Actions.Add
-Fields(ACTIONS_flId_ACTIONDATE) = Date$
-Fields(ACTIONS_fId_ACTIONTYPE) = "Follow Up™
-Fields(ACTIONS_fId_ASSIGNEDTOID) = *supervisor™ _
"goFE_UtilityCode.UserGetID(*'Supervisor™)
-Fields(ACTIONS_fld_AUTOREMIND) = True
-Fields(ACTIONS_fld_REMINDUSERID) = _
-Fields(ACTIONS_fld_ASSIGNEDTOID)
-Fields(ACTIONS_fId_DESCRIPTION) = PO Approval"
-Save
End With
-Save
-CloseDown
End With
Set ApVendor = Nothing
End If
End If
End With

End Sub

278

CHAPTER 5

Creating an Excel Chart from Query Results

This code sample creates an Excel chart from the results of a query.

This macro can be assigned to a query or executed via the

"Process VBA macro™ option

This code requires a reference to the Microsoft Office type libraries

Note: for the Total Journal Fields, miscellaneous fields, and chart to work correctly,
run this on a query with (Real Amount (credits multipled by -1)) and Journal in the

* first 2 fields of the Output

Public Sub DumpQueryToExcel(o As 1BBQueryRow)

IT 0.BOF Then
Set moExcel = CreateObject("Excel .Application'™) “Opens Excel
moExcel .Visible = True

moExcel .Workbooks.Add “Add a new worksheet
Set moWorksheet = moExcel .Worksheets(1)

Dim IHeads As Long “Fills the first row with

"For IHeads = 1 To o.FieldCount - 1 “"the field names from the query
"moWorksheet.Cells(1, IHeads) = o.FieldName(lHeads)

“Next IHeads
moWorksheet.Cells(1, 1)
moWorksheet.Cells(1, 2)

"Amount™
“Journal™

Elself o0.EOF Then

* Post Process Some Results In Excel
With moWorksheet
-Columns("A:E™) .EntireColumn._AutoFit
-Columns(**A:C") .Select
End With

moExcel .Application.Selection.Sort Keyl:=moWorksheet.Range("'A2"), _
Orderl:=xlAscending, Header:=xlGuess, OrderCustom:=1, MatchCase:=False, _
Orientation:=xITopToBottom

moWorksheet.Columns(1) -.NumberFormat = "$#,##0.00_)"

moWorksheet.Cells(1, 4) "Total "Journal Entry™"
moWorksheet.Cells(2, 4) = "Total "Accounts Payable™"
moWorksheet.Cells(3, 4) = "Total "Allocation Management™"
moWorksheet.Cells(4, 4) = "Total "Cash Management™™
moWorksheet.Cells(5, 4) = "Total "Purchase Orders™"
moWorksheet.Cells(7, 4) = "Total "Student Billing™"
moWorksheet.Cells(8, 4) = "Total "Accounts Receivable™™
moWorksheet.Cells(9, 4) = "Total "Fixed Assets™™
moWorksheet.Cells(10, 4) = "Total "Cash Receipts™"
moWorksheet.Cells(1, 5).Formula = "=SUMIF(_

B2:B" & o.RowNum + 1 & ",""=Journal Entry"",A2:A" & o.RowNum + 1 & *")"
moWorksheet.Cells(2, 5).Formula = "=SUMIF(_

279

SAMPLE PROGRAMS

(Continued- page 2 of 3)

B2:B" & o0.RowNum + 1 & *,""'=Accounts Payable*,A2:A™ & o.RowNum + 1 &)"

moWorksheet.Cells(3, 5).-Formula = "=SUMIF(_

B2:B" & 0.-RowNum + 1 & *,"*"=Allocation Management'* ,A2:A" & o.RowNum + 1 & *")"
moWorksheet.Cells(4, 5).-Formula = ""=SUMIF(_

B2:B" & o0.RowNum + 1 & *,"*'=Cash Management'",A2:A" & o.RowNum + 1 & ")
moWorksheet.Cells(5, 5).Formula = "=SUMIF(_

B2:B" & 0.RowNum + 1 & *,"*'=Purchase Orders'™,A2:A™ & o.RowNum + 1 &)"
moWorksheet.Cells(7, 5).-Formula = "=SUMIF(_

B2:B" & o0.RowNum + 1 & *,"*=Student Billing"™",A2:A™ & o.RowNum + 1 &)"
moWorksheet.Cells(8, 5).Formula = "=SUMIF(_

B2:B" & o0.-RowNum + 1 & *,''=Accounts Receivable™,A2:A™ & o.RowNum + 1 & ")*
moWorksheet.Cells(9, 5).Formula = "=SUMIF(_

B2:B" & 0.RowNum + 1 & *,""=Fixed Assets",A2:A"™ & o.RowNum + 1 &)"
moWorksheet.Cells(10, 5).Formula = "=SUMIF(_

B2:B" & o.RowNum + 1 & ",""=Cash Receipts'",A2:A" & o.RowNum + 1 & ")"

moWorksheet.Range("'E1™, "E10™).NumberFormat = "$#,##0.00_)"
buildChart "subroutine that builds a chart based on the worksheet

“Clean up
Set moWorksheet = Nothing
Set moExcel = Nothing

Else
" Fill In The Details
With moWorksheet

Dim 1 As Long
ITf o.Field(1) = "Debit" Then
-Cells(o-RowNum + 1, 1) = o.Field(2)

Else
-Cells(o-RowNum + 1, 1) = o.Field(2) * -1
End If
.Cells(o.RowNum + 1, 2) = o.Field(3)
End With
End If
End Sub

"this sub uses Excel’s objects to create a chart through code
Private Sub buildChart()

Dim oChart As Chart

moWorksheet._Range("'D1:E10") .Select
Set oChart = moExcel .Charts.Add

280

CHAPTER 5

(Continued- page 3 of 3)

oChart.ChartType = x13DColumnClustered

oChart.SetSourceData Source:=moExcel.Sheets(*"Sheetl') _Range(*'D1:E10"), PlotBy:= _
xIColumns

oChart.Location Where:=xlLocationAsNewSheet

With oChart
-HasTitle = False
-Axes(xICategory) .HasTitle = False
-Axes(xlSeries) _HasTitle = False
-Axes(x1Value) .HasTitle = False
End With

oChart.SeriesCollection(l).Select
oChart.Walls.Select
oChart.PlotArea.Select
oChart.Walls.Select

With moExcel .Selection.Border
.ColoriIndex = 16
-Weight = xIThin
-LineStyle = xIContinuous
End With

moExcel .Selection.Fill.TwoColorGradient Style:=1, Variant:=1
With moExcel .Selection
-Fill_Visible = True
-Fill _ForeColor.SchemeColor 42
-Fill_BackColor.SchemeColor = 41
End With

With oChart.ChartGroups(l)
-GapWidth = 150
-VaryByCategories = True

End With

With oChart
-DepthPercent = 100
-GapDepth = 150

End With

End Sub

281

SAMPLE PROGRAMS

Read-Only Database Assistance Samples

Read-Only Database Assistance is an optional module that provides open access to the Blackbaud database
structure and its underlying relational architecture.The Financial Edge includes two Read-Only Database
Assistance sample programs installed in The_Financial_Edge\Help\Samples\Advanced Samples\Open folder.
These samples include code to create an auto-refreshing report and an HTML dashboard.

@ To create a disconnected ADO recordset, use the UtilityCode CreateDisconnected ADORecordset function.
This is a read-only recordset you can use to browse through Financial Edge data while protecting your data
from updates and deletes.

If you are using Read-Only Database Assistance, pass in your Read-Only Database Assistance user name and
password. If you are using VBA or API, pass in your vendor name and serial number. Use the SSQL argument to

specify the data you want.

Creating an Auto-Refreshing Report

This sample uses Read-Only Database Assistance to run queries on The Financial Edge database so you can
easily monitor account and project activity, and it displays the query results in Excel. To use the Auto Refreshing
Report, browse to the Help/Samples/Advanced Samples/API/Samples/SamplesinXLS folder and copy both the
Samples.xlIs and Queryl.dqy files. Then, paste both files in the Financial Edge/Plug-ins folder. The spreadsheet
refreshes automatically every ten minutes, but you can change the refresh interval.

Creating an HTML Dashboard

With the HTML Dashboard sample, you can export the data in The Financial Edge Dashboard to an HTML file
you can send to users who do not have The Financial Edge installed on their computers. This sample uses
Read-Only Database Assistance to run queries on The Financial Edge databases.

The HTML Dashboard is located in the Help/Samples/AdvancedSamples/Open/CreateHTMLDashboards folder.
To run this sample, you must replace the sample user ID and password with your user 1D and password. For more
information, see the comments in the code text. When you run the HTML Dashboard, a submenu appears listing
the names of all available dashboard panels. To save a panel in HTML, select a panel from the list and click Save.
After you save the file, a message appears asking if you want to view the file. To view the file in your browser,

click Yes.

@ Dashboard panels consisting of only graphs cannot be exported to HTML. You can export panels that
contain both graphs and tables, but the graphs will not appear in the HTML file.

&

CHAPTER 5

Index

A

accessing API
bypassing the Financial Edge login form 104
creating a custom login form 104
third party vendors 104
accessing the API
using the Financial Edge login form 103
Accounts Payable code samples
adding
credit memo record 162
invoice record 158
product record 153
puchase order record 163
receipt record 166
recurring invoice record 160
vendor record 155
creating
bank reconciliation report 176
one-time check 168
open invoice report 173
purchase order detail report 178
vendor activity report 171
Accounts Receivable code samples
adding
billing item 200
charge record 198, 199
client record 194
deposit 202
invoice line item 197
invoice record 196
payment 203, 214
refund 201
creating
aged receivable report 205
deposit list report 209
invoice report 211
open item report 207
API
accessing

bypassing the Financial Edge login form 104

creating a custom login form 104
third party vendors 104
using the Financial Edge login form 103

compared with VBA 5

defined 4

integrating with The Financial Edge
accessing the API 102
code conventions 102
requirements 102
Visual Basic.NET 104

API code samples

INDEX 283

Accounts Payable
records 152
reports 170

Accounts Receivable
records 193
reports 204

Cash Receipts
records 212
reports 215

common to The Financial Edge
adding a note to a record 261
defining multiple accounts 269
finding a code table entry 262
finding an attribute value ID 262
overview 258
using an invoice entry form 267
using global variables 259
using the award status manager 263

using The Financial Edge as an active server

page 260

using the report manager 265

using the report viewer 266
Fixed Assets

records 181

reports 185
General Ledger

records 125

reports 141
overview 124

Student Billing
records 217
reports 231
API sample applications
adding an annotation form 114
bbsoCodeTableServer 115
bbsoTableLookupServer 116
listing records 117
managing
code tables 114
media and notepads 118
printing reports 120
using
Financial Edge grids and controls 117
Financial Edge search screen 121
applet extensions, see plug-ins 108
Application Programming Interface, see APl 102
AppMode property, FE_API object 105
Award Status Manager plug-in 263

B

bbsoCodeTableServer 115
bbsoTableLookupServer 116

bypassing the Financial Edge login form in API 104

284 INDEX

C

Cash Receipts code samples
adding
deposit 213
creating
cash receipts report 216
child object
adding 27
deleting 28
child view data collections 37
code samples, API
Accounts Payable
records 152
reports 170
Accounts Receivable
records 193
reports 204
Cash Receipts
records 212
reports 215
Fixed Assets
records 181
reports 185
General Ledger
records 125
reports 141

Student Billing
records 217
reports 231
collection objects, supporting transactions 71
CreateServiceObject method, FE_Services object
107
custom login form in API 104

D

data collections
child 34
accessing child elements 35
iterating through child object collections 35
updating child collection elements 36
child view 37
filtering 38
sorting
overview 37
SortField 37
SortOrder 37
top-level 34
data objects
adding records 26
child collections 13
child objects 10
child view collections 13

deleting records 26
handling errors
overview 30
using the Err.Description Property 31
using the SessionContext ErrorObject 32
warning rules 33
loading top-level data objects
using database 1D 23
using Intellisense 25
using the search screen 24
object collections 11
top-level 12
overview 8, 20
top-level 9, 20
updating 29
validating 30

E

early-bound objects 14
errors, identifying 30

F

FE_API object
AppMode property 105
GetAvailableRegistryKeys method 105
LastErrorMessage property 106
QueryShutDown method 107
SessionContext property 105
SignOutOnTerminate property 107
FE_Services object
CreateServiceObject method 107
GetProglD methods 108
FEControls.OCX 117
filtering collections 38
Financial Edge type library
overview 6
Financial Edge:Open
samples
creating an auto-refreshing report 281
creating an HTML dashboard 281
Fixed Assets code samples
adding
asset record 182
transaction record 184
creating
action listing report 189
book value report 186
depreciation summary report 191
foreign keys 17

G

General Ledger code samples

adding
budget 140
project 135
configuring General Ledger accounts from a
third-party application 126
creating
accounts with a default notepad 132
balance sheet 148
budget adjustment report 151
general ledger detail report 144
project activity report 146
trial balance report 142
GetAvailableRegistryKeys method, FE_API object
105
GetProgID methods, FE_Services object 108
global variables, initializing and closing 259

IBBHeaderInfo interface 108
IBBHostedPlugin 108
initializing objects 14
in API 15
in VBA 15
Intellisense, defined 6
interface classes, IBBHostedPlugin and
IBBHeaderInfo interface 108

K

key types 17

L

LastErrorMessage property, FE_API object 106

O

object models
defined 8
overview 8
objects
defined 8
initializing
in API 15
in VBA 15
releasing 16

P

INDEX 285

check 250
deduction record 241
employee benefit 240
employee record 238
federal tax 243
local tax 247
state tax 245
time batch 251

creating
employee profile report 253
hours worked report 254

plug-ins
Award Status Manager 263
creating 111
deploying 113
IBBHostedPlugin and IBBHeaderInfo interface

108

overview 108
Report Manager 265
Report Viewer 266
user interface 109

primary keys 17

Q

query objects

creating static queries 45

opening a query 43

overview 43

processing a query result set 44
QueryShutDown method, FE_API object 107

R

Read-Only Database Assistance
samples
overview 281
releasing objects 14, 16
Report Manager plug-in 265
report objects
example 51
overview 47
report categories collection 47
report instances collection 49
report types collection 49
Report Viewer plug-in 266

S

SDK, overview 3

server, using The Financial Edge as an active server
page 260

service objects 14
adding

286 INDEX

annotation forms 60
media forms 64
notepad forms 61
property viewers 66
search screens 68
attribute type server 57
code tables server 53
overview 43
query objects 43
report objects 47
table lookup handler 54
SessionContext property, FE_API object 105
SignOutOnTerminate property, FE_API object 107
Software Development Kit, see SDK 3
sorting collections 37
Student Billing code samples
adding
advance deposit record 218
billing item 219
billing schedule record 220
charge record 221
credit record 222
deposit record 223
deposit report 234
financial aid record 224
individual record 225
organization record 226
payment record 227
refund record 228
student record 230
creating
aged accounts receivable report 232
open item report 236

T

third party vendors, accessing API 104
top-level data collections 34
top-level data objects
loading

using database ID 23

using Intellisense 25

using the search screen 24
transactions 71
type library, using with Financial Edge objects 6

U

user interface 109
user interface objects
IBBDataObject interface 40
IBBMetaField interface 41
overview 39
using the Financial Edge login form in APl 103

V

VBA
compared with API 5
defined 3
Intellisense, defined 6

VBA code samples
calculating GST and PST amounts 271, 273
overview 269
requiring approval for large purchase orders 276
sending a warning message for large invoices 275
validating dates 270
viewing query results in HTML 271

W

warning rules 33

	VBA and API Guide for the Financial Edge
	Introduction to VBA and API
	Overview of VBA and API
	Comparing VBA and API

	Understanding Blackbaud Program Architecture
	Using the Type Library
	Setting a manual reference to a type library from an API application

	Understanding Objects, Object Models, and Collections
	Understanding Object Models
	Understanding Data Objects
	Understanding Top-Level Objects
	Understanding Child Objects

	Understanding Object Collections
	Understanding Top-Level Collections
	Understanding Child Collections
	Understanding Child View Collections

	Understanding Service Objects

	Working with Objects
	Using Early-Bound Objects
	Initializing and Releasing Objects
	Initializing Objects in VBA
	Initializing Objects in API
	Releasing Objects

	Using Foreign Keys

	Programming Basics
	Managing Data Objects
	Managing Top-Level Objects
	Financial Edge Top-Level Objects
	Loading Top-Level Data Objects
	Adding Records Using Data Objects
	Adding a record using a data object

	Deleting Records Using Data Objects

	Managing Child Objects
	Adding a Child Object
	Deleting a Child Object

	Updating Data Objects
	Validating Data Objects
	Handling Data Object Errors

	Managing Data Collections
	Managing Top-Level Collections
	Managing Child Collections
	Accessing Specific Child Elements
	Iterating through Child Object Collections
	Updating Child Collection Elements

	Managing Child View Collections
	Sorting Collections
	Filtering Collections

	Managing User Interface Objects
	Visual Basic Interfaces
	Using the IBBDataObject Interface
	Using the IBBMetaField Interface

	Managing Service Objects
	Managing Query Objects
	Creating a static query using the CStaticQ object

	Managing Report Objects
	Using the Code Tables Server
	Using the Table Lookup Handler
	Using the Attribute Type Server
	Using Annotation Forms
	Using the Annotation Form object

	Using Notepad Forms
	Using the Notepad Form object

	Using Media Forms
	Using the Media Form object

	Using Property Viewers
	Using the Property Viewer object

	Using Search Screens
	Using the Search Screen object

	Managing Transactions

	Blackbaud VBA
	Working in the VBA Environment
	Managing Active Objects
	Managing the FE_Application Object
	UIOpening Event
	UIClosing Event

	Managing Active Data Objects
	The BeforeOpen Event
	The BeforeSave Event
	The AfterSave Event
	The CloseRecord Event
	The BeforeDelete Event
	The AfterDelete Event

	Managing Active Process Objects
	The BeforeImport Event
	The BeforeImportRecord Event
	The HandleException Event (Active Import)
	The AfterImport Event
	The BeforeProcess Event
	The AfterProcess Event

	Managing VBA Macros
	Managing Active Object Macros
	Creating a custom project business rule

	Managing Standard Macros
	Managing Data Object Macros
	Managing Query Macros
	Macro Samples
	Sample Data Object Macro: Setting Defaults
	Sample Standard Macro: Adding Notepad Records
	Sample Query Macro: Exporting to Excel

	Blackbaud API
	Working with the API
	API Code Conventions
	Accessing the API
	API and VB.NET

	Managing the FE_API Object
	The SessionContext Property
	The AppMode Property
	The GetAvailableRegistryKeys Method
	The LastErrorMessage Property
	The QueryShutDown Method
	The SignOutOnTerminate Property

	Managing the FE_Services Object
	The CreateServiceObject Method
	The GetProgID Methods

	Managing Plug-Ins
	Creating Plug-Ins
	Setting up a simple plug-in class

	Deploying Plug-Ins

	Managing API Applications
	Sample: Adding an Annotation Form
	Sample: Managing Code Tables
	Using bbsoCodeTableServer
	Using bbsoTableLookupServer

	Sample: Using Grids and Controls
	Sample: Listing Records
	Sample: Managing Media and Notepads
	Sample: Printing Reports
	Sample: Using the Search Screen

	Sample Programs
	API Samples
	General Ledger Records Samples
	Creating a General Ledger Account Structure
	Adding an Account with a Default Note
	Adding a Project
	Adding a Budget

	General Ledger Reports Samples
	Creating a Trial Balance Report
	Creating a General Ledger Detail Report
	Creating a Project Activity Report
	Creating a Balance Sheet
	Creating a Budget Adjustment Report

	Accounts Payable Records Samples
	Adding a Product Record
	Adding a Vendor Record
	Adding an Invoice Record
	Adding a Recurring Invoice Record
	Adding a Credit Memo Record
	Adding a Purchase Order Record
	Adding a Receipt Record
	Adding a One-Time Check

	Accounts Payable Reports Samples
	Creating a Vendor Activity Report
	Creating an Open Invoice Report
	Creating a Bank Reconciliation Report
	Creating a Purchase Order Detail Report

	Fixed Assets Records Samples
	Adding an Asset Record
	Adding a Transaction Record

	Fixed Assets Reports Samples
	Creating a Book Value Report
	Creating an Action Listing Report
	Creating a Depreciation Summary Report

	Accounts Receivable Records Samples
	Adding a Client Record
	Adding an Accounts Receivable Invoice Record
	Adding an Invoice Line Item
	Adding a Charge Record
	Adding a Credit Record
	Adding a Billing Item Record
	Adding a Refund Record
	Adding an Accounts Receivable Deposit
	Adding an Accounts Receivable Payment

	Accounts Receivable Reports Samples
	Creating an Aged Receivable Report
	Creating an Open Item Report
	Creating a Deposit List Report
	Creating an Accounts Receivable Invoice Report

	Cash Receipts Records Samples
	Adding a Cash Receipts Deposit
	Adding a Cash Receipts Payment

	Cash Receipts Reports Samples
	Creating a Cash Receipts Report

	Student Billing Records Samples
	Adding an Advance Deposit Record
	Adding a Billing Item
	Adding a Billing Schedule Record
	Adding a Charge Record
	Adding a Credit Record
	Adding a Deposit Record
	Adding a Financial Aid Record
	Adding an Individual Record
	Adding an Organization Record
	Adding a Payment Record
	Adding a Refund Record
	Adding a Student Record

	Student Billing Reports Samples
	Creating an Aged Accounts Receivable Report
	Creating a Deposit Report
	Creating an Open Item Report

	Payroll Records Samples
	Adding an Employee Record
	Adding an Employee Benefit
	Adding a Deduction Record
	Adding a Federal Tax
	Adding a State Tax
	Adding a Local Tax
	Adding a Calculation
	Adding a Check
	Adding a Time Batch

	Payroll Reports Samples
	Creating an Employee Profile
	Creating an Hours Worked Report
	Creating a Payroll Journal Report

	Common Samples
	Using Global Variables
	Using Financial Edge as an Active Server Page
	Adding a Note to a Record
	Finding a Code Table Entry ID
	Finding an Attribute Value ID
	Using the Award Status Manager
	Using the Award plug-in

	Using the Report Manager
	Using the Report Manager plug-in

	Using the Report Viewer
	Using the Invoice Entry Form
	Defining Multiple Accounts

	VBA Samples
	Validating Dates
	Viewing Query Results in HTML
	Calculating GST and PST Amounts
	With this sample, located in the Advanced Samples folder, you can calculate GST and PST tax rates for Australia and Canada. Setting Up the Sample
	Using the Sample

	Sending a Warning Message for Large Invoices
	Requiring Approval for Large Purchase Orders
	Creating an Excel Chart from Query Results

	Read-Only Database Assistance Samples
	Creating an Auto-Refreshing Report
	Creating an HTML Dashboard

	Index
	Search the Guide

