
API Essentials Guide

022808

©2008 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any
form or by any means, electronic, or mechanical, including photocopying, recording, storage in an
information retrieval system, or otherwise, without the prior written permission of Blackbaud, Inc.

The information in this manual has been carefully checked and is believed to be accurate. Blackbaud, Inc.,
assumes no responsibility for any inaccuracies, errors, or omissions in this manual. In no event will
Blackbaud, Inc., be liable for direct, indirect, special, incidental, or consequential damages resulting from
any defect or omission in this manual, even if advised of the possibility of damages.

In the interest of continuing product development, Blackbaud, Inc., reserves the right to make improvements
in this manual and the products it describes at any time, without notice or obligation.

All other products and company names mentioned herein are trademarks of their respective holder.

All other products and company names mentioned herein are trademarks of their respective holder.

RE7Enterprise-APIEssentialsUK-022808

API Essentials
Guide
ESSENTIALS. 1

Using This Guide . 3
Objects and Object Models . 6
The Raiser’s Edge Type Library. 7
The Raiser’s Edge Object Fundamentals . 11
Data Objects . 13
Programming Child Objects and Collections . 21
Adding and Deleting Child Objects . 30
Filtering Data Object Collections . 32
Error Handling. 33
User Interface (UI) Objects . 34
Raiser’s Edge ActiveX Controls . 37
Service Objects . 45
Report Objects . 50
Advanced Concepts and Interfaces . 80
Custom View: Creating Custom Parts . 85

API . 95

What is API?. 98
API vs. VBA . 99
API Programming Fundamentals . 99
The API In Action . 106
Plug-Ins . 122
The Raiser’s Edge Object MetaViewer . 128
API Code Samples . 129
Plug-In Code Samples . 130

INDEX . 131

 What Is In This Guide?
Using the API Essentials Guide, your technical staff can learn how to use the
optional module API for Advanced Application Development to customise
programs that integrate with your Raiser’s Edge system. For example, a program
developer can create seamless links from The Raiser’s Edge to other software
programs, such as patient tracking, ticketing, and the Internet. You can also learn
about the following:
• “The Raiser’s Edge Object Fundamentals” on page 11
• “Programming Child Objects and Collections” on page 21
• “Advanced Concepts and Interfaces” on page 80
• “Custom View: Creating Custom Parts” on page 85
• “API Programming Fundamentals” on page 99
• “The Raiser’s Edge Object MetaViewer” on page 128
• “API Code Samples” on page 129
• “Plug-In Code Samples” on page 130

 How Do I Use These Guides?

The Raiser’s Edge user guides contain examples, scenarios, procedures, graphics,
and conceptual information. Side margins contain notes, tips, warnings, and space
for you to write your own notes.
To find help quickly and easily, you can access the Raiser’s Edge documentation
from several places.
User Guides. You can access PDF versions of the guides by selecting Help,

User Guides from the shell menu bar or by clicking Help on the Raiser’s
Edge bar in the program. You can also access the guides on our Web site at
www.blackbaud.co.uk. From the menu bar, select Support, User Guides.
In a PDF, page numbers in the Table of Contents, Index, and all
cross-references are hyperlinks. For example, click the page number by any
heading or procedure on a Table of Contents page to go directly to that page.

Help File. In addition to user guides, you can learn about The Raiser’s Edge by
accessing the help file in the program. Select Help, The Raiser’s Edge Help
Topics from the shell menu bar or press F1 on your keyboard from anywhere
in the program.
Narrow your search in the help file by enclosing your search in quotation
marks on the Search tab. For example, instead of entering Load Defaults,
enter “Load Defaults”. The help file searches for the complete phrase in
quotes instead of individual words.

WE L C O M EIV

Essentials

Contents
__
Who is This Guide For? . 3
Documentation Map . 4
Programming Language . 4
Sample Code. 4
Raiser’s Edge Programming Essentials . 5
Objects and Object Models . 6
What Are Objects and Object Models? . 6
The Raiser’s Edge Object Model . 6
Data Objects . 6
The Raiser’s Edge Type Library. 7
Using Early Bound Objects and the Type Library . 7
Using the Type Library from VBA. 8

Accessing the References Dialog . 9
Setting a Reference to The Raiser’s Edge Type Library. 10

Using the Type Library from an API Application . 10
Accessing the References Dialog from Visual Basic 5.0 and Higher 11

The Raiser’s Edge Object Fundamentals . 11
The SessionContext . 11

Accessing the SessionContext from VBA. 12
Accessing the Session Context from API . 12

Initialising and Releasing Objects . 13
The Init and CloseDown Methods. 13

Data Objects . 13
Data Object Hierarchy . 14
What Are “Top Level” Objects?. 14
Loading a Data Object . 15

How Many Ways Can I Load a Data Object? . 15
An Alternate Method to Load Data Objects—The Database ID. 15
Using The Raiser’s Edge Search Screen to Load Your Data Object 16

Updating Data Objects . 18
The Fields Property . 19
Validation and Integrity. 20

Adding and Deleting Data Objects . 20
Adding a Record Using a Data Object . 20
Deleting a Record Using a Data Object . 21

Programming Child Objects and Collections . 21
What is a Child Object? . 21
Child Collection Types . 22

The Standard Child Collection . 22
The Child Top Collection . 26
The Child View Collection . 28

CH A P T ER 12
The Top View Collection . 28
Adding and Deleting Child Objects . 30
Adding a Child Object . 30
Deleting a Child Object . 31
Sorting Collections . 31

SortField . 31
SortOrder . 32

Filtering Data Object Collections. 32
Error Handling . 33
Return Code Based . 33
Error Code Based. 33
User Interface (UI) Objects. 34
Data Entry Forms. 35
Showing a Standard Form . 35
Raiser’s Edge ActiveX Controls . 37
Data Grid . 39
Attributes Grid . 42
Phones/Email/Links Grid. 45
Service Objects. 45
Query Objects . 46

Opening a Query. 46
Processing a Query Result Set . 46
Creating Static Queries. 47

Report Objects . 50
Reports Categories Collection . 50
Reports Types Collection. 52
Report Instances Collection . 53
Report Objects Sample . 55
Code Tables Server . 57
Table Lookup Handler . 60
Attribute Type Server. 63
Annotation Form . 66

Using the Annotation Form Object . 66
Notepad Form . 68

Using the Notepad Form Object. 68
Media Form . 70

Using the Media Form Object . 70
Property Viewer . 73

Using the Property Viewer . 73
Search Screen. 75

Using the Search Screen Object . 75
MiscUI . 78

Using the MiscUI Object . 78
Advanced Concepts and Interfaces . 80
Using the IBBDataObject Interface. 81
Using the IBBMetaField Interface. 82
Transactions . 84
Custom View: Creating Custom Parts. 85
Custom Parts . 85
Adding a Custom Part . 86

ES S EN T I A LS 3
This guide provides Visual Basic developers with all the information needed to customise and enhance
The Raiser’s Edge. From a quick VBA macro to a full blown application based on The Raiser’s Edge Object API,
you can find what you need here. A wealth of programming samples are provided to illustrate key concepts and
provide you with a solid foundation on which to build your custom Raiser’s Edge solutions.

The programming examples and related code provided to you via this guide are the property of Blackbaud, Inc. and
you may not copy, distribute, convey, license, sublicense, or transfer any rights therein. All examples are subject to
applicable copyright laws.
We hope you find this guide useful as you develop for The Raiser’s Edge. If you are not sure if this material is
targeted for you, see “Using This Guide” on page 3.
If you have programmed in Visual Basic before, we suggest you review the “Documentation Map” on page 4. This
map is a great starting point from which you can navigate to the particular aspect of Raiser’s Edge programming
that interests you.

Using This Guide
This guide is for developers who are creating solutions for The Raiser’s Edge. These solutions range from creating
a basic VBA procedure to large, complex addition to The Raiser’s Edge.
The information is laid out in a clean, progressive fashion. We introduce concepts and techniques gradually. If you
are familiar with Visual Basic programming and object-oriented programming concepts, the content will be useful.
VBA programming in The Raiser’s Edge should be very familiar to anyone who has written either Visual Basic
code or VBA code in other applications (Microsoft Office, for example). API for Advanced Application
Development should be easy for any developer who has used COM objects from Visual Basic.
This information is not for everyone. To cover the material in a useful manner, we had to make certain assumptions
about your level of knowledge. If you are comfortable with the Visual Basic language and you understand data
types, variable scoping, and how to use the Visual Basic Editor, then this guide is for you. If not, your time may be
better spent with one of the many fine introductory materials available. Actually, one of the best resources is the
online help provided with VBA.

Please remember...
We provide programming examples for illustration only, without warranty either expressed or implied,
including, but not limited to, the implied warranties of merchantability and/or fitness for a particular purpose.
This guide assumes you are familiar with Microsoft Visual Basic and the tools used to create and debug
procedures. Blackbaud Customer Support can help explain the functionality of a particular procedure, but they
will not modify, or assist you with modifying, these examples to provide additional functionality. If you are
interested in learning more about The Raiser’s Edge VBA and API optional modules, contact our Sales
department at solutions@blackbaud.co.uk.

For more information...
Visit Blackbaud’s Web site at www.blackbaud.co.uk for software customisation FAQs, code samples, and other
helpful information, such as error explanations. The VBA\API Web site page is one of your primary sources of
information for customising your Raiser’s Edge software.

CH A P T ER 14
Documentation Map
This guide is broken down into logical sections, each designed to help you learn and use a particular aspect of the
available extensibility technologies. Because there is important information that applies to both VBA for Advanced
Customisation and API for Advanced Application Development optional modules, some documentation for both
products is included in the Essentials chapter. If you come across VBA or API information that is not applicable to
your organisation’s Raiser’s Edge software package, contact Sales at solutions@blackbaud.co.uk. for more
information.

The Essentials
This chapter introduces key concepts that you need to understand as you program with The Raiser’s Edge.

Visual Basic for Applications (VBA)
This chapter details VBA support in The Raiser’s Edge. VBA is an extremely powerful, industry-standard
programming environment built right into The Raiser’s Edge.

Application Program Interface (API)
This chapter exposes core functionality using API, enabling developers to build custom solutions that leverage
Raiser’s Edge technology through a set of easy to use COM objects.

Programmer’s Reference
This section, located only in the help file, provides a detailed listing of all objects and services available to
developers programming with The Raiser’s Edge object model.

Programming Language
The code samples in this guide are written using Visual Basic 6.0 language. This language is shared by VBA,
Microsoft Visual Basic 6.0, Microsoft Office 2000, and other VBA 6.0 host applications. While it is possible to use
API from other languages (C++ or Java, for example), Blackbaud can only provide support regarding Visual Basic
programming.

Sample Code
Periodically, we provide code samples to illustrate a point. Code samples always appear in the following format.

'Programming Example -
 ' we will put VB code comments in Green

 Dim oGift as CGift
 Set oGift = New CGift

 oGift.Init REApplication.SessionContext

Note....
You may notice occasional line breaks in the code due to layout constraints. All line breaks are documented with
the standard “ _ ” in the code sample.

ES S EN T I A LS 5
Note that we sometimes clarify points in the code samples using standard Visual Basic comments. To accentuate
them, all comments appear in green.

Raiser’s Edge Programming Essentials
This section covers the items that make the foundation of Raiser’s Edge programming. We introduce the terms and
skills you need to use Raiser’s Edge objects, and we take you step-by-step through several simple examples.

Objects and Object Models
This section provides a general overview of COM automation objects and object models.

The Raiser’s Edge Type Library
The Raiser’s Edge Type Library provides “early bound” access to the system’s objects and functions with any
COM compatible language.

The SessionContext
This section introduces the most important object in the system. No Blackbaud programming task can be tackled
without using a SessionContext.

Initialising and Releasing Objects
This section outlines the mechanics of creating and destroying objects, as almost every object in The Raiser’s
Edge must be initialised and released in the same fashion.

Data Objects
All data elements in The Raiser’s Edge are modeled using data objects. Data objects provide a high-level COM
programming interface to every data record in The Raiser’s Edge.

User Interface (UI) Objects
User interface objects allow for programmatic access to many of the forms and windows that comprise
The Raiser’s Edge user interface.

Service Objects
These objects provide a high-level interface to the system level functionality in various Raiser’s Edge modules
such as Query, Export, and Reports.

Advanced Concepts and Interfaces
This section discusses some advanced topics such as Interfaces and Transactions, that are available in The Raiser’s
Edge object model.

CH A P T ER 16
Objects and Object Models
The Raiser’s Edge was built from the ground up using objects. Nearly everything you do in Visual Basic involves
manipulating objects.

Every data element — each constituent, gift, campaign, and so on — is an object that you can manipulate
programmatically in Visual Basic. Once you understand how to work with objects, you are ready to program
The Raiser’s Edge.

What Are Objects and Object Models?
The Raiser’s Edge consists of two things: content and functionality. Content refers to the data elements the system
contains: the constituents, gifts, contacts, campaigns, funds, and appeals. Content also refers to information about
attributes of individual elements in the application, such as the amount of a gift or the number of registrants for an
event. Functionality refers to all the ways you can work with the content in The Raiser’s Edge — for example,
opening, closing, adding, or deleting records in the application.
Content and functionality are broken down into discrete, related units called objects. You are probably already
familiar with some of these objects, as elements of The Raiser’s Edge user interface. One example is the
constituent record, which is presented as one window with many tabs allowing access to subsets of the
constituent’s object model.
To become a productive Raiser’s Edge programmer, it is important to understand how the object model is
organised. We built this model with the goal of providing consistent, hierarchical access to all the data elements in
the system. Blackbaud’s development team used these very same objects to build The Raiser’s Edge!
The Raiser’s Edge object model has one major goal: to expose all important functionality and data needed to
manipulate the database records and services in a high-level manner.

The Raiser’s Edge Object Model
The Raiser’s Edge object model is best described as a group of object models. Each major record type in the
system has its own hierarchical object model. For example, the Gift has a large model comprised of “child” objects
such as instalments, split funds, and attributes. The concept of a child object is an important one to grasp. By child
object, we mean an object that is only accessible via an object that is above it in the object model. You cannot
create child objects as free standing objects; they must be created via a method on their parent’s object. By building
these models to reflect the layout of their real-world counterparts, the task of programming an extremely large,
complicated relational database such as The Raiser’s Edge is simplified to a manageable level.
In addition to containing lower-level objects, each object in the hierarchy contains content that applies to both the
object itself and all objects below it.

Data Objects
The Raiser’s Edge object model is based primarily around the data that the program manages. It does not expose
the interface as a programmable entity. Because the key to your Raiser’s Edge system is the data that it manages,
data objects are the key to programming The Raiser’s Edge.

Please remember...
Every Raiser’s Edge data element—such as each constituent, gift, campaign—is an object that you can
manipulate programmatically in Visual Basic.

ES S EN T I A LS 7
Let’s take a look at a simple example. In The Raiser’s Edge, constituents can be assigned a constituent code.
Constituent codes are used to denote important information on each record (such as Alumni, Past Parent, Major
Donor). A constituent can have any number of constituent codes on her record (in relational database terms there is
said to be a “one-to-many” relationship between a record and its constituent codes). A constituent code has no
meaning outside of a record. For this reason, in The Raiser’s Edge data object model, the ConstituentCodes object
is a child of the CRecord data object, which is the object in the system that represents constituents.

In this diagram, we see that for each CRecord there is a child object named ConstituentCodes, and the
ConstituentCodes object has child object named CConstituentCode. The ConstituentCodes object name is plural
for a very important reason. It is a collection object. This means it is used to iterate through any number of children
(in this case constituent codes). All collection objects in The Raiser’s Edge object model can be navigated using
“For Each” syntax, which is the standard for navigating VBA collections. Take a look at the next code sample.
Don't worry about the details—they are introduced later in this guide.

The Raiser’s Edge Type Library
The easiest and most efficient way to use Raiser’s Edge objects is through the provided type library. A type library
is a language independent file that provides type information about the components, interfaces, methods, constants,
enumerations, and properties exposed by The Raiser’s Edge. While this online guide discusses only Visual Basic,
type libraries can be used from any language (for example, in Microsoft Visual C++, the developer can use the
#import statement).

Using Early Bound Objects and the Type Library
Without using a type library, Visual Basic is limited to communicating to components through the dispatch
interface, which is slow and provides no compile-time syntax checking. Once you have a reference to The Raiser’s
Edge Type Library, you can use the object browser provided by Visual Basic to explore the objects, and can easily
get help on any property or method.

'Note: The code to initialise and load a CRecord (oRecord)
' object omitted for brevity

 Dim oConsCode as CConstituentCode

 'Print all of this constituent's constit codes to the
 ' VBA debug window
 For Each oConsCode in oRecord.ConstituentCodes
 Debug.Print oConsCode.Fields(CONSTITUENT_CODE_fld_CODE)
 Next oConsCode

CH A P T ER 18
Another incredible productivity gain that becomes available when using type libraries with Visual Basic 5.0 and
higher (or VBA) is Intellisense. If you have worked with VB or VBA, you have probably noticed while
programming with objects that when you hit “.” after an object variable defined as a type described in a type library
(or Visual Basic component) the code editor appears and displays a list similar to the one in the following graphic.

VB’s Intellisense feature displays only the properties and methods that are available on the object. In the above
graphic, you see properties and methods such as Actions, Addresses, Aliases. These are all child objects that are
available for a CRecord object. VB can only work this magic if you are using an early-bound object. By
early-bound, we mean an object variable that is declared as a specific type. Take a look at the following code
sample.

Using the Type Library from VBA
When you have the optional module VBA, the system automatically sets a reference to The Raiser’s Edge Type
Library when you start VBA. Each of the two provided VBA projects has a reference to the library.

'This variable is late bound. While it will still work,
' it will incur significant runtime overhead, and it will
' yield no intellisense

Dim oRecord As Object
Set oRecord = New CRecord

'This early-bound variable provides optimal speed and
' access to the VB/VBA intellisense feature.

Dim oRecordEarly As CRecord
Set oRecordEarly = New CRecord

For more information about VBA, see the VBA chapter.

ES S EN T I A LS 9
Accessing the References Dialog
You can manually set a reference to the library by selecting Tools, References from the menu bar in VBA.

CH A P T ER 110
Setting a Reference to The Raiser’s Edge Type Library
When you select References, the References dialog appears with a list of various type library references already
set. The most important of these (for our purposes) is Blackbaud Raisers Edge 7 Objects. This is the reference you
must set to gain early-bound access to Raiser’s Edge Objects.

Using the Type Library from an API Application
If you have the optional module API, you need to set a reference to the type library from any Visual Basic project
that you want to gain early-bound access to Raiser’s Edge objects.

Note...
If you uncheck the System checkbox, you must exit The Raiser’s Edge and enter the program again to restore
System references. System references load when you enter The Raiser’s Edge. Therefore, if you try to add the
reference back on the References dialog, an Automation error generates.

ES S EN T I A LS 11
Accessing the References Dialog from Visual Basic 5.0 and Higher
To set a reference to the library from Visual Basic 5.0 or higher, create a new VB project and select Project,
References from the menu bar.

The Raiser’s Edge Object Fundamentals
This section introduces the mechanics of using Raiser’s Edge objects. First we introduce “The SessionContext” on
page 11, which is the key to Raiser’s Edge programming. Next, we explain some important methods involved in
“Initialising and Releasing Objects” on page 13. We also break down each object type in the system and provide
code samples and discuss how to use them.

The SessionContext
Whenever you use an object exposed by The Raiser’s Edge object model, it must be initialised first. All objects are
initialised with a very important object parameter, the SessionContext. The SessionContext is the key to
programming The Raiser’s Edge. This object holds information regarding the state of the active instance of
The Raiser’s Edge application.

When you create new instances of objects and initialise them with a SessionContext, the object queries the
SessionContext for important information they need to operate (for example, a handle to the low-level database
connection interface).

Please remember....
The SessionContext is the key to programming The Raiser’s Edge. This object holds information regarding the
state of the active instance of The Raiser’s Edge application

CH A P T ER 112
Accessing the SessionContext from VBA
When the VBA environment is initialised, The Raiser’s Edge exposes its SessionContext via the API object. The
API object is a global object available to VBA. The most important property on the API object is the
SessionContext. The code sample initialises a CGift object for use in VBA.

Accessing the Session Context from API
Like VBA, objects must be initialised when using API. It is important to understand that while a few differences
exist, once you understand Raiser’s Edge object programming, the same rules apply to both VBA and the API.
An API application obtains its reference to the SessionContext via the API object. Unlike the REApplication
object, which is automatically initialised and available to VBA in the running instance of The Raiser’s Edge, API
must be initialised by the programmer. The code sample accomplishes the same task as the previous VBA sample.

Note the similarities to the earlier VBA sample. The first three lines of code in the sample remain constant for any
API application and are usually placed in a section of your API application that is executed only once (for example,
in your main form’s Load event).

Dim oGift as CGift
 Set oGift = New CGift

 'Use the REApplication object to get a reference to the
 ' SessionContext
 oGift.Init REApplication.SessionContext

 'Load Gift 1
 oGift.Load 1

 'Release reference to Gift Object
 oGift.CloseDown

Dim oAPI as REAPI

 'Initialise the API and log in
 Set oAPI = New REAPI

 'Log in as Raiser's Edge user Judy with password "Admin"
 oAPI.Init "Judy", "Admin"

 Dim oGift as CGift
 Set oGift = New CGift

 'Use the API object to get a reference to the
 ' SessionContext
 oGift.Init oAPI.SessionContext

 'Load Gift 1
 oGift.Load 1

 'Release reference to Gift Object
 oGift.CloseDown

ES S EN T I A LS 13
Initialising and Releasing Objects
To properly initialise a Raiser’s Edge object, you pass a reference to the SessionContext. Almost every top-level
object in The Raiser’s Edge is initialised this way.

The Init and CloseDown Methods
The VBA code sample is representative of almost every sample of object programming code you see in the
The Raiser’s Edge.

Initialise (.Init) with a SessionContext and release (.CloseDown) the object when you are done. If you attempt to
use a Raiser’s Edge object without properly initialising it, a trappable runtime error is raised.

Closing down objects can be harder. If you fail to properly CloseDown an object, potentially all the object
resources remain “alive” and in memory. To many developers, this is known as a “memory leak”. The objects
attempt to detect this situation and raise errors in many situations if a .CloseDown call was not made. In some cases
this type of leak cannot be detected immediately, leading to some hard-to-track bugs. Remember, if it has an .Init
method, it probably has a .CloseDown method also, and you should always make sure you call them both.

Data Objects
Most Raiser’s Edge programming involves data objects. As discussed in “Objects and Object Models” on page 6,
data objects provide a high-level abstraction layer over the records in the underlying Raiser’s Edge database. In
this section we learn the basics of programming with data objects.

Dim oGift as CGift
 Set oGift = New CGift

 'Initialise the oGift via the init method
 oGift.Init REApplication.SessionContext

 ' Load Gift 10
 oGift.Load 10

 ' Properly release reference to Gift Object using the CloseDown method
 oGift.CloseDown

CH A P T ER 114
Data Object Hierarchy
To manipulate a data record in your Raiser’s Edge system, you initialise and load the appropriate data object.
The Raiser’s Edge object model provides a data object for every editable record in your system. Only a select few
data objects can be instantiated and loaded. Most data objects are “children” of another object in the hierarchy. For
example, your database may have thousands of constituents who are coded with a constituent code of AL
(Alumni). Therefore, in your database there are thousands of ALUMNI constituent code records stored. Alone,
each of these records has little value. However, they do have meaning in the context of the specific constituent to
which they are related. The constituent code object is accessed as a “child” of the constituent object (CRecord, to
be exact).

What Are “Top Level” Objects?
Understanding the parent-child data object relationship is a key concept to grasp as you move forward with data
object programming. Throughout this guide, you see objects at the top of the object hierarchy referred to as “Top
Level Objects”; any objects that are accessible only via a top level object are referred to as “child” objects.
Which objects are parents and which are children? The easiest way to familiarise yourself with the hierarchy is to
look at The Raiser’s Edge application. When end-users are performing day-to-day data entry chores, they access
records through the Records page in The Raiser’s Edge shell.

The previous graphic shows the standard Raiser’s Edge Records page. The highlighted buttons are top level
objects. Just as the end-user must first open a Constituent to access his constituent codes, you, as the developer,
must load a constituent object first before navigating to the constituent’s constituent codes.
In addition to the items above, constituent relationships and event participants are also top level objects.

ES S EN T I A LS 15
Loading a Data Object
Now that we have introduced some concepts, it is time to start programming with data objects. This section
introduces some common ways to load a data object.

How Many Ways Can I Load a Data Object?
Each data object supports various methods to allow for loading. Each Raiser’s Edge top-level object can be loaded
using any of its unique fields. For example, The Raiser’s Edge does not allow an end-user to save two constituent
records with the same constituent ID, or two campaign records with the same campaign ID. Given this, you can
load each data object using the underlying record’s unique fields with the LoadByField method.
LoadByField accepts two arguments. The first argument denotes the unique field you use. The second argument
provides the key to search for. Here, you can see another great example of how powerful Visual Basic’s Intellisense
feature can be. Because each top-level data object has a different set of unique fields, the object’s corresponding
LoadByField enumerates these fields in a drop-down list as you fill in the first argument to the LoadByField
method.

In the code snippet above, we see the programmer has instantiated a CRecord object. As mentioned earlier,
CRecord is the data object that encapsulates individual and organisation constituent records. Note the drop-down
list that appeared automatically when the developer entered the unique field argument. Visual Basic “knows”
which arguments are valid in the context of a CRecord because The Raiser’s Edge type library exposes this
information. The productivity boost gained here cannot be overstated. As you program with Raiser’s Edge objects,
you will see that throughout the system, arguments are exposed to Intellisense in this fashion.

An Alternate Method to Load Data Objects—The Database ID
Each record in The Raiser’s Edge is stored in the database. To define database relationships and integrity, the
records are assigned unique values by the Database Management System (DBMS). These values are called Primary
Keys. Each top-level data object can be loaded using this key value with the “Load” method. The load method
accepts just one argument, a long integer representing the primary key of the record you want to load.

CH A P T ER 116
Code Sample
These code samples show the various ways to load a constituent data object for the hypothetical constituent
“Michael Simpson”. Mr Simpson has a national insurance number of NZ 13 05 77 A, and a database (primary key)
of 166.

Using The Raiser’s Edge Search Screen to Load Your Data Object
So far, we have seen how to load a data object given a specific search key. Many times this is a completely
acceptable solution (for example, if you are building your own customised search screen). However, in some cases
you may require a more robust search, or you may want to concentrate on your application and use as many
pre-built components as possible.

Dim oConstit as CRecord
Set oConstit = New CRecord

oConstit.Init REApplication.SessionContext

'Load the record via the National Insurance Number
oConstit.LoadByField uf_Record_SOCIAL_SECURITY_NO, "NZ 13 05 77 A"

'Load the record via the Database ID
oConstit.Load 166

ES S EN T I A LS 17
The Raiser’s Edge exposes its search screen as a programmable entity. Using the standard Raiser’s Edge search
screen from Visual Basic code is easy. The Raiser’s Edge search screen is referred to as a Service Object, meaning
it is an object that provides easy access to Raiser’s Edge functionality. We are jumping ahead a little here—the
many service objects provided by The Raiser’s Edge are discussed later in this guide, but at this point it is
important to at least introduce the concept of using the search screen to load a data object.

Dim oConstit as CRecord

 'Access the SearchScreen service object
 Dim oServices as REServices
 Set oServices = New REServices
 oServices.Init REApplication.SessionContext

 'Declare variable used to access the SearchScreen
 Dim oSearch As IBBSearchScreen

 'The services object exposes most common, useful interface dialogs
 Set oSearch = oServices.CreateServiceObject(bbsoSearchScreen)
 oSearch.Init REApplication.SessionContext

 '"Tell" the search dialog to allow for a constituent search
 oSearch.AddSearchType SEARCH_CONSTITUENT

 'Show The Search form (See Figure 4)
 oSearch.ShowSearchForm

 'If The user didn't cancel - assign the
 ' record they selected to our data object
 If Not oSearch.SelectedDataObject Is Nothing Then
 Set oConstit = oSearch.SelectedDataObject
 End If

CH A P T ER 118
The search screen (from the UI, this is the Open screen) is the end result of the previous code sample. The end-user
is presented with the standard Raiser’s Edge search dialog. If the end-user selects a record, the search service
constructs the appropriate data object, which we access from code via the “SelectedDataObject” property.

Updating Data Objects
Previously in this guide, we explored “Initialising and Releasing Objects” on page 13 and “Loading a Data Object”
on page 15 of data objects. In this section, you learn how to use the data objects to update our database records.

ES S EN T I A LS 19
The Fields Property
Each data object shares a common and very important property—Fields. The Fields property exposes all the
individual, updatable data elements that make up a data object. Instead of exposing a unique property for each field
on a data object, which would be cumbersome and very hard to extend, Blackbaud’s developers built the Fields
property. With the Fields property, when you access the Fields property from code, a list appears showing the
constants for all valid fields on the object. This way, there is no time spent searching through hundreds of
properties on an object just to find the Name field. This design also enables Blackbaud to easily add new fields as
The Raiser’s Edge evolves, without breaking any existing code. Review the code sample below.

In this sample, you can see the developer has accessed the fields property of a gift data object. He is presented with
a drop-down of all the available fields on a gift, and he is selecting “GIFT_fld_amt” (which represents the Gift
Amount field on the gift record). Review the complete code sample below that loads a gift from the database into
the gift data object, increments the Gift Amount field (by £10.00), and then saves the gift.

This sample illustrates how simple it is to update your data using data objects. Remember, if we put invalid data
into the amount field (for example, “xxxx”) when we issue the .Save method on the object, the data object raises a
trappable error.

Dim oGift As CGift
 Set oGift = New CGift

 oGift.Init REApplication.SessionContext
 oGift.Load 2

 'Update the gift amount field
 ' Increment it by 10 dollars...

 oGift.Fields(GIFT_fld_Amount) = oGift.Fields(GIFT_fld_Amount) + 10

 'Save our changes
 oGift.Save

 'Clean Up
 oGift.CloseDown
 Set oGift = Nothing

CH A P T ER 120
Validation and Integrity
Data object validation goes much further than just filtering out bad data. Every Business Rule in the system is
checked, both internal rules and rules your end-users established using Business Rules in The Raiser’s Edge. For
example, in The Raiser’s Edge, if end-users attempt to over-apply a pledge payment, the following message
appears.

If a Visual Basic developer attempts to over-apply a pledge using Visual Basic code, a trappable error is raised with
the same message (accessible via the err.description property on the Visual Basic Error object). You will learn
about trapping and handling data object errors later. For now, it is important to understand this validation exists to
maintain a high level of consistency and integrity in your database.
The main point to remember is the object insulates your database, and no “garbage” can make it to the database
without first being validated by the object. This rule applies to every facet of the data element. The Raiser’s Edge
uses code just like the code provided in the examples, so you can be sure that updates using data objects are
consistent with updates made by end-users in the system.

Adding and Deleting Data Objects
You can add and delete data objects with code.

Adding a Record Using a Data Object
When an end-user wants to add a new constituent record to The Raiser’s Edge, he clicks Records from the
Raiser’s Edge bar, and then clicks New Individual or New Organisation. You can also do this through code, as
the following sample illustrates.

'Create a new instance of the CRecord object
 Dim oRec As CRecord
 Set oRec = New CRecord

 'Initialise the object by passing in a valid SessionContext
 oRec.Init REApplication.SessionContext

 'Set any values and save
 oRec.Fields(RECORDS_fld_IS_CONSTITUENT) = "True"
 oRec.Fields(RECORDS_fld_LAST_NAME) = "Bakker"
 oRec.Save

 'Always clean up. Objects with an Init() method typically
 ' have a CloseDown() method.
 oRec.CloseDown
 set oRec = Nothing

ES S EN T I A LS 21
Since the CRecord object (remember, CRecord is the data object that represents a constituent in The Raiser’s
Edge) has only one required field, we are able to initialise a new object, set the contents of the Surname field, and
issue a save. All top level objects are added in this exact same manner. Earlier in this guide, we discussed child
objects and the object hierarchy. You access child objects only via a parent (top level) object. Therefore, child
objects are added in a slightly different fashion. For more information about adding and deleting child objects in
detail, see “Programming Child Objects and Collections” on page 21.

Deleting a Record Using a Data Object
You learned how to load a data object from the database (see “Loading a Data Object” on page 15 for more
information). Deleting a record requires just one more line of code. This code sample builds on an earlier sample
where we learned how to load a data object.

Programming Child Objects and Collections
In this section we examine the details of working with child objects. We also discuss the various types of object
collections exposed in The Raiser’s Edge model.

What is a Child Object?
A child object cannot exist without a top-level object. To repeat an earlier example, if you need to add constituent
codes to a record in The Raiser’s Edge, you must first load a constituent record. When you need to add constituent
codes programmatically, you must also first load and initialise the parent record. This is the best way to
conceptualise child objects.

Dim oConstit as CRecord
 Set oConstit = New CRecord

 oConstit.Init oSessionContext

 'Load the record via the Social Security Number
 ' Note: we left out some error trapping here to keep the sample clear
 ' (for example if this record didn't exist)
 oConstit.LoadByField uf_Record_SOCIAL_SECURITY_NO, "025-64-6382"

 'Delete the Record using the Data Object's .Delete method
 oConstit.Delete

 oConstit.CloseDown
 set oConstit = Nothing

CH A P T ER 122
In the following graphic, we see The Raiser’s Edge constituent form. The form encapsulates all the child objects of
a constituent. Note that the constituent codes are all children of this record and are available only through the
constituent's CRecord object.

Child objects cannot be created, loaded, saved, initialised, or deleted. All these actions are accomplished via
methods exposed by the child object’s parent object in the hierarchy.

Child Collection Types
Now that you understand the concept of child objects, you can master the details. Not all child objects are the same.
The various types of child objects and collections and the mechanics of programming objects and collections
differ.
• Collection Type 1 - “The Standard Child Collection” on page 22
• Collection Type 2 - “The Child Top Collection” on page 26
• Collection Type 3 - “The Child View Collection” on page 28
• Collection Type 4 - “The Top View Collection” on page 28

The Standard Child Collection
The most common use of child objects in The Raiser’s Edge object model is via child collections. A child
collection, which is collection of child objects, cannot exist without a top-level object. You can add and remove
child objects from the collection, but you cannot save child objects without calling the parent’s save method.

ES S EN T I A LS 23
Why does this seemingly artificial constraint exist? Child objects depend on the parent’s save method because the
parent may have to enforce rules governing membership in the collection. When the parent is saved, all the child
objects in the collection are saved if they are dirty (meaning either their data has been changed since they were
loaded, or they have been newly added), and all the objects that have been removed from the collection are deleted
from the database.

Common Structure Shared By All Child Collections
If you are familiar with programming using Visual Basic collections, then the methods and means for programming
Raiser’s Edge child collections should seem quite natural. The following table lists the common methods and
properties available on every child collection in The Raiser’s Edge object model.

Following standard collection object model design practices, The Raiser’s Edge always has two closely related
classes that handle exposing collections: the parent, which is always named in the plural form (for example,
ConstituentCodes), and the child, which is always named in the singular form (for example, CConstituentCode).

Navigating Child Object Collections
The easiest, most efficient manner for navigating through (also referred to as iterating) child collections is through
the Visual Basic “For Each” syntax. All collections support this format. Review the sample code below.

Method Description

Item Returns a child object given an index.

Add Creates a new child object, stores its membership in the collection, and returns a
reference to it.

Remove Removes a child object from the collection. Once a child object is removed from a
collection it cannot be used.

IBBMoveServer Optional: This establishes how the “VCR” buttons on the form function. This is
covered in detail in Programming Reference.

Count Provides a count of the number of child objects in the collection.

'Code to initialise and load a CRecord object (oRecord) omitted for brevity.

 Dim oCode as CConstituentCode

 For Each oCode In oRecord.ConstituentCodes

 Debug.Print "The code is: " & oCode.Fields(CONSTITUENT_CODE_fld_CODE)

 Next oCode

CH A P T ER 124
The code sample loops through each constituent code found linked to the constituent currently being referenced by
the oRecord variable. When the last code is accessed, the loop automatically terminates. Here is a sample of the
output from the code above.

Updating Child Collection Elements
The previous graphic illustrates how easy it is to access the members of a child collection. To modify the child
objects, we need only to add a line of code that updates the child data via its Fields property.

'Code to initialise and load a CRecord object (oRecord) omitted for brevity.

 Dim oCode as CConstituentCode

 For Each oCode In oRecord.ConstituentCodes

 Debug.Print "The code is: " & oCode.Fields(CONSTITUENT_CODE_fld_CODE)

 'Modify each constituent code, setting it's date
 ' from to December 13th, 1967
 oCode.Fields(CONSTITUENT_CODE_fld_DATE_FROM) = "12/13/1967"

 Next oCode

 'Important! None of the changes are saved until
 ' the next line of code executes!!
 oRecord.Save

ES S EN T I A LS 25
It is very important to note that the constituent code changes were not immediately committed to the database.
Remember, child objects do not have a save method; the top-level parent (in this case the oRecord object variable)
is responsible for the save. When we issue oRecord.Save, all the changes made are validated against any system
and end-user Business Rules. If the rules “pass” all the rule checks, the records are committed to the database. If a
rule fails to be validated, The Raiser’s Edge raises a trappable runtime error. For example, one of the rules that
apply to constituent codes is the Date from field must come before (chronologically) the Date to field. So, in the
example above, if we had a constituent code child element that already has a date to of “12/12/1967”, The Raiser’s
Edge would yield the following error.

As we mentioned earlier in this guide, this internal checking is paramount to preserving database integrity. You
simply cannot “corrupt” your Raiser’s Edge data from Visual Basic code. The same rules that apply to an end-user
apply to your data objects.

Accessing Specific Child Elements
Like any Visual Basic collection, Raiser’s Edge child objects can be accessed directly via the Item method. Things
become more advance here. Since a Raiser’s Edge child collection is providing high-level access to underlying
database records, the developers at Blackbaud needed to “overload” the behavior of the item method, providing
multiple ways to use it depending on the context of how it is accessed. For example, if you pass in a string (For
example, “66”), the Item method returns the child object whose database ID field is equal to 166. If you pass in a
number (For example, 166), then the item method will return the “nth” member of the collection.

To ensure consistent access to collections across the object model, we provide these two different methods. The
most common use of the Item method of a child collection is to pass it a numeric parameter, accessing the nth item.
This becomes more evident when we discuss sorting later in this section. When we work with top-level collections,
the value of accessing collection elements via the database ID becomes more clear.

'Access the 5th element in the collection
 With oRec.ConstituentCodes.Item(5)
 Debug.Print .Fields(CONSTITUENT_CODE_fld_DATE_FROM)
 End With

 'Access an element of the collection that has an
 ' underlying database id (primary key) of 5.
 With oRec.ConstituentCodes.Item("5")
 Debug.Print .Fields(CONSTITUENT_CODE_fld_DATE_FROM)
 End With

CH A P T ER 126
The Child Top Collection
The child top collection is slightly different from a standard child collection. The first major difference lies in the
fact that the child top collection is a collection of top-level objects accessible via another top-level object. The
collections we have looked at so far are children of a specific top-level object; the child elements cannot exist
without the parent. What if top-level objects are related in The Raiser’s Edge? This is when child top collections
come into use. For example, a campaign object in The Raiser’s Edge is a top-level object, but campaigns can be
linked to multiple funds, which are also top-level objects.

ES S EN T I A LS 27
With The Raiser’s Edge Enterprise, the Campaigns tab is not a child top collection. It is view only.

CH A P T ER 128
This is the standard fund record form presented by The Raiser’s Edge. In this graphic, the end-user has navigated
to the Campaigns tab of a fund record. The campaigns linked to the Building Fund are highlighted. To link another
campaign to the fund, the end-user would simply click the binoculars in the grid and an Open search screen would
appear with a list of campaigns that exist in the database. From here, the end-user could select an additional
campaign to link to the fund. The important thing to remember is the user is not entering any “new” data. She is
simply linking this fund to an existing campaign. The same applies to programmatic manipulation of a child top
collection. The child top collection has an “add” method just like any collection. However, the “add” method of a
child top collection accepts one argument, which is a reference to an existing top-level object. The code sample
below explains this.

The Child View Collection
Child view collections are collections that allow you to navigate to a subset of a particular true child collection.
You cannot add to or remove from these collections using standard collection methods because they are just views
of another collection. Their membership is determined by other factors (many times, by very specific methods on
the parent object). A good example of a child view collection is the InstalmentPayments collection exposed by the
gift object. Due to the many issues involved in paying off pledge instalments, it is not practical for the mechanics
of paying a pledge to be handled via a simple add method. A specific object is used to handle this process, the
PledgePayer (this is discussed later in the guide). Child view collections have the following methods.

The Top View Collection
The top view collection is a collection in which you to enumerate a top-level object. These objects are useful if you
want to process all the instances of a given object in the system. Top view collections have no add or remove
methods since adding and removing top-level data objects is achieved through methods on the top-level objects
themselves.

'Load fund record 1
 Dim oFund as CFund
 Set oFund = New CFund

 oFund.Init REApplication.SessionContext
 oFund.Load 12

 'Get the first campaign in the system
 ' by navigating to the first element in top level campaigns collection
 Dim oCamps As CCampaigns
 Set oCamps = New CCampaigns

 oCamps.Init REApplication.SessionContext

 Dim oCamp As CCampaign
 Set oCamp = oCamps.Item(1)

 'Add the campaign to this fund's Campaigns collection
 oFund.Campaigns.Add oCamp
 '...Cleanup code omitted

Method Description

Item Returns a child object given an index.

Count Provides a count of the number of child objects in the collection.

ES S EN T I A LS 29
One powerful feature of top view collections is the ability to apply a filter to the collection when it is initialised so
that only a specific subset of objects are included. For example, you may want to only include active campaigns
when using the CCampaigns collection. In this case, you pass the correct filter constant
(tvf_Campaign_ActiveOnly) and as the collection is initialised, it contains only campaigns that have been marked
as active. This additional parameter is optional.

Each top-level object has a corresponding top view collection. Remember, a distinguishing characteristic of a
collection is that the object’s name takes the plural form. The table below lists all the top-level objects and their
corresponding collections. The Record Type column refers to the record as it is represented in The Raiser’s Edge.
The Data Object column lists the corresponding data object that is used to manipulate the record type
programmatically. The Collection Object column lists the top view collection object that can be used to navigate
the record’s top view collection.

'Define a variable to navigate the top view collection.
 Dim oAllCamps as CCampaigns
 Dim oCamp as CCampaign

 Set oAllCamps = new Ccampaigns
 oAllCamps.Init REApplication.SessionContext, tvf_Campaign_ActiveOnly

 For Each oCamp in oAllCamps
 Debug.Print oCamp.Fields(Campaign_fld_Description)
 Next oCamp

Record Type Description Collection Object

Constituent CRecord CRecords

Gift CGift CGifts

Action CAction CActions

Fund CFund CFunds

Campaign CCampaign CCampaigns

Appeal CAppeal CAppeals

Membership CMembership CMemberships

Job CJob CJobs

Special Event CSpecialEvent CSpecialEvents

CH A P T ER 130
Adding and Deleting Child Objects
Now that we have discussed child objects and the different types of child collections, we can look at how to add or
delete a child object. Although there are many different types of child objects, the process to add or remove a child
object is the same. It is important to remember that the changes are not actually made to the database until the
parent record’s save method is called.

Adding a Child Object
To create a new top-level object, you have to use the VB construct of (for example, Set oRecord = New CRecord).
However, this does not work for child objects because child objects cannot be created without a top-level object
and are always contained within a child collection. Therefore, the first step is to load the top-level object you want
to add to. Next, use the collection’s Add method to return a new child object to use. At this point, the object is a
member of the collection but is not added to the database until the save method is called. The following code
sample explains how this is done.

The important point to remember is that the Add method of the collection is the only way to create a new child
object. All child objects are added using the same process.

Please remember....
It is important to remember that changes are not actually made to the database until the parent record’s Save
method is called.

'This initializes and loads the parent record
Dim oRecord As CRecord
Set oRecord = New CRecord

oRecord.Init REApplication.SessionContext

oRecord.LoadByField uf_Record_CONSTITUENT_ID, 75

'Create a CConstituentCode child object
Dim oConsCode As CConstituentCode

'The Add method returns a reference to a new CConstituent Code
' object in the CConstituentCodes collection
Set oConsCode = oRecord.ConstituentCodes.Add

'Set the values for the different fields

oConsCode.Fields(CONSTITUENT_CODE_fld_CODE) = "Current Parent"
oConsCode.Fields(CONSTITUENT_CODE_fld_DATE_FROM) = "1/1/1998"

'This step saves the new constituent code information to the database
oRecord.Save

'Clean up!
oRecord.CloseDown
Set oRecord = Nothing

ES S EN T I A LS 31
Deleting a Child Object
Deleting a child object is very similar to adding a child object. First, you must load the parent object and then call
the collection’s remove method. This removes the child object from the collection you must call the parent’s save
method before the object is actually removed. Similar to the Item method discussed earlier, the Remove method is
overloaded, providing two different ways to specify the child object to remove. The Remove method accepts either
the actual object or the object’s Item number as parameters. Review an example of both.

Either method accomplishes the same task. The situation determines the best method to use. When you remove a
child object, no warning message appears, so you should add a warning that the end-user is about to delete
information.

Sorting Collections
After you know how to access and move through collections, you may want to arrange the objects in a different
order from the way they normally appear in the collection. Not all collections can be sorted in this manner, but
many of the more commonly used collections do support sorting.
When sorting collections, you must keep a couple of very important things in mind.

• First, when using the Item method, remember that it returns the nth member based on the current sort.
• Second, when using top view collections, it is possible to filter out top-level objects using a query.

If you filter the collection using a query, the query order is retained regardless of following settings.

SortField
You can use the SortField property to specify any data field available in the member object to be the field used to
sort the entire collection. With the use of IntelliSense and Enums, it is very easy to choose the field you would like
to sort by.

'This removes oConstituentCode from the collection
 oRec.ConstituentCodes.Remove oConstituentCode

 'This removes the 2nd element from the collection
 oRec.ConstituentCodes.Remove 2

 'The object is not actually removed from the database until this step
 oRec.Save

CH A P T ER 132
SortOrder
The SortOrder property allows you to sort in either ascending or descending order. If no SortOrder is specified,
then the default order is ascending.

Filtering Data Object Collections
Collections contain many methods and properties that make it easy to move through them to gather the information
you need. If you do not need to see all the child objects in a collection, you can use a query to filter the child objects
in your collection. In top-level collections, you can filter the child objects in the collection based on a query.
To filter a top-level collection, use the query ID of the query you want to filter. To get this query ID, you can use
the LoadByField method covered in “Loading a Data Object” on page 15. Otherwise, you can iterate through the
QueryObjects collection to find the query. The query type must match the record type of the collection. For
example, if you are using a CRecords collection, the query you use must be a Constituent query. If you specify a
query of the wrong type, a trappable error message appears.

'Initialise collection
 Dim oFunds As CFunds
 Set oFunds = New CFunds
 oFunds.Init REApplication.SessionContext

 'Set the Field and Order for the sort
 oFunds.SortOrder = Descending
 oFunds.SortField = FUND_fld_DESCRIPTION

 'Loop through the collection
 For Each oFund In oFunds
 Debug.Print oFund.Fields(FUND_fld_DESCRIPTION)
 Next oFund

ES S EN T I A LS 33
Once you know the query ID, set the property FilterQueryID equal to this query ID. The collection returns only
child objects contained in that query. Note the child objects are sorted into the collection in the same order as in the
query.

Error Handling
Before you resolve errors generated during program processing, it is important to understand the possible ways
The Raiser’s Edge objects can “communicate” with your programming. As you program, many times a
The Raiser’s Edge object needs to return information to your programs. For example, using a query to filter the
objects in our collection. If you tried to use a campaign query to filter a fund collection, this would not work. The
object needs some way to communicate this back to the program, so that you can resolve this problem. You can use
two methods to accomplish this:

• “Return Code Based” on page 33
• “Error Code Based” on page 33

Return Code Based
If you use return values, object methods are set up to return an error code if they are unsuccessful. Advantages to
this include enabling you (in fact, almost forcing you) to handle every possible error as it happens. The downside is
that it can be cumbersome to explicitly check for every possible error throughout your code.

Error Code Based
The alternative is to use VB’s built-in capability to raise errors, which is what Raiser’s Edge objects do. If proper
error handling is not in place, these errors can cause our program to abort. Fortunately, handling errors in VB is
very simple and offers many flexible ways to resolve errors. Depending on how you structure error handlers, you
can handle each error in the subroutine in which it occurs, allow it to cascade back to a central error handler for the
entire program, or use a variation of the two.

Dim oQuery As CQueryObject
 Set oQuery = New CQueryObject

 oQuery.Init REApplication.SessionContext

 'This loads the query that is named Major Donors.
 oQuery.LoadByField uf_QUERY_NAME, "Major Donors"

 Dim oRecords As CRecords
 Set oRecords = New CRecords

 oRecords.Init REApplication.SessionContext

 'This tells the collection which query (Major Donors) to filter with.
 oRecords.FilterQueryID = oQuery.Fields(QUERIES2_fld_QUERIESID)

 'From here on, we can use the oRecords collection and it will only
 ' contain cRecord objects that are in the Major Donor query.

CH A P T ER 134
When an error is raised, we can access information about the error by using the Err object provided by VB.
Err.Description is a helpful property that tells you the reason for the error, such as failing to specify all required
fields when adding a Raiser’s Edge new fund through code.

If we ran this code, the CFund object would raise an error and we would get a message box similar to the one
below.

User Interface (UI) Objects
As you learned previously, it is very easy to access, change, and save data using Raiser’s Edge objects. To get the
information you need from the end-user, you must have some sort of user interface (UI). In many instances, you
need to design a custom form in order to accomplish your design goals. In some cases, you may want to use a form
that already exists in The Raiser’s Edge. Using an existing Raiser’s Edge form in your project is a simple way to
save programming time and makes your program easier to use because the forms are familiar.

Dim oFund As CFund
 Set oFund = New CFund

 oFund.Init REApplication.SessionContext
 oFund.Fields(FUND_fld_DESCRIPTION) = "The Sullivan Scholarship Fund"

 On Error GoTo ErrorHandler

 oFund.Save

 'This turns the Error Handler off.
 On Error GoTo 0

 'Clean up!
 oFund.CloseDown
 Set oFund = Nothing

 'Always place an Exit Sub before the Error Handler
 ' to prevent entering the Error Handler unintentionally.
Exit Sub

ErrorHandler:
 MsgBox Err.Description, vbOKOnly
 'This returns processing back to the line after where the error occurred
 Resume Next
End Sub

ES S EN T I A LS 35
Some ActiveX controls in The Raiser’s Edge are very convenient for displaying certain types of information. For
example, all of the different types of attributes are displayed in a specific control, called the Attributes grid. In
your program, if you need to display a list of attributes, you can use the same control The Raiser’s Edge
developers use to display attributes.

Data Entry Forms
Because your end-users are already familiar with data entry forms, you can drastically simplify your programming
by using the same forms as those used by The Raiser’s Edge developers. All the top-level objects have UI forms.
When a form appears, it is fully functional and contains all toolbars and menu bars so end-users can perform the
same operations they normally do within the program.

Showing a Standard Form
You can use many different UI forms in the program. Although different forms may have some different methods
and properties depending on their use, forms do have some things in common.

• They always have an Init method which accepts a SessionContext and a CloseDown method.

• They have a property that accepts a data object that “matches” the form. For example, the
CCampaignForm.CampaignObject needs a CCampaign object. This is important because the UI form needs to
have a reference to a data object so that it can make changes or create a new record based on the actions of the
user. If the data object passed is a new data object, then a new record is created if the user chooses to save
while using the form. If an existing data object is passed, then changes the end-user makes are saved to the
existing record if the end-user chooses to save while using the form. By using the Fields property of the data
object, you can fill in some of the fields on the form before it is displayed to the end-user.

• They always have the ShowForm method. This is what actually displays the form. ShowForm accepts the
following four optional parameters.

Parameter Variable Type Description

bModal Boolean Determines whether the form displays modally,
defaults to False.

oFormToCenterOn Object The UI Form displays itself centered over the form
specified here.

bDoNotCloseDataObject Boolean If set to True, the data object passed to the form is
still initialised and able to used after the user has
closed the form.

oMoveServer IBBMoveServer This establishes how the “VCR” buttons on the form
function. This is covered in detail in Programming
Reference.

CH A P T ER 136
Code Sample

Dim oCampaign as CCampaign
 Set oCampaign = New CCampaign
 oCampaign.Init REApplication.SessionContext

 'If we wanted to use show an existing Campaign, we would load it here.
 ' Or we could set some of the .Fields before we display the Campaign.
 oCampaign.Fields(Campaign_fld_CampaignID) = "LIBRARY"
 oCampaign.Fields(campaign_fld_DESCRIPTION) = "Library Campaign"
 oCampaign.Fields(campaign_fld_START_DATE) = "11/6/98"

 Dim oForm as CCampaignForm
 Set oForm = New CCampaignForm
 oForm.Init REApplication.SessionContext

 'This must be done first or an error will be raised.
 Set oForm.CampaignObject = oCampaign

 'This will display the form modally, centered over frm_Main.
 oForm.ShowForm True, frm_Main

 'Clean up!
 oForm.CloseDown
 Set oForm = Nothing

 oCampaign.CloseDown
 Set oCampaign = Nothing

ES S EN T I A LS 37
This code displays a fully functional Campaign so the end-user can do anything he normally does on a Campaign
form in The Raiser’s Edge.

Raiser’s Edge ActiveX Controls
In the previous section, you learned how to use existing Raiser’s Edge forms in your programs to simplify
programming and increase usability. Now, you can also learn how to use a few specific controls to simplify your
code. When developing The Raiser’s Edge, the development team decided to create their own ActiveX controls
for displaying certain lists of information, such as attributes. This way, we can design a grid that accomplishes all
the design goals for displaying that particular type of information.
Three ActiveX controls can be used to display common Raiser’s Edge collections in a grid.

• The Selection List is used in many different areas. For example, it is used to display a list of gifts, actions, or
notepads.

• The Attributes grid is used to display the different types of attributes used in The Raiser’s Edge.
• The Phones/Email/Links grid is used to display phone numbers, email addresses, and links to Web sites.

Due to the specific types of information each of these grids displays, The Raiser’s Edge developers were able to
build specific functionality into the control, making it easy to incorporate those same functions into your programs.

CH A P T ER 138
To use these controls in Visual Basic 6.0, first add the components to your VB project. To do this, select Project,
Components from the menu bar. When the Components form displays, mark Blackbaud RE ActiveX Controls
7.5b.

Once you have added the Controls to your project, the next step is to place the control you want on the form.

Note...
If you are using VBA, the control references are REControls7b.REAttributeGrid, REControls7b.REDataGrid,
and REControls7b.REPhoneGrid. For more information about VBA, see the VBA chapter in this guide.

ES S EN T I A LS 39
Data Grid
The data grid is used in many places to display information and enable the user to select a record from the list in
The Raiser’s Edge. For example, it is used to display lists of constituents, funds, and gifts. After you have drawn
the grid onto your form, you may want to set the property PreviewDataType. This property, which is only available
at design-time, allows you to tell the control the type of data objects you want to display. It then shows all the
columns that are standard for that type of record. You can then size the grid appropriately. You do not have to set
this property during design-time. The grid displays the columns based on the type of collection you use regardless.
However, it is an easy way to determine the best size for the grid.

CH A P T ER 140
Now, let’s review the grid during run-time. Before we can use the grid, we must call the Init method. Next, we set
the DataCollection property by passing a collection of the data objects we want to display. The last step to
displaying the grid is to call the Refresh method. Any time your data collection changes, you should call the
Refresh method. This updates the grid using the current members of the collection. The following code sample
shows you how to use the grid.

There are methods for the grid that offer access to the same features present in The Raiser’s Edge. Calling the
CustomizeCollection method brings up a form the end-user can use to select columns and sort the order in which
they appear. Using the ShowLegend method enables the user to select colours, use Bold and Italic type, and add
subscripts for certain data objects.

Option Explicit
Private moRecord as CRecord

Private Sub Form_Load()

 Set moRecord = New CRecord
 moRecord.Init ReApplication.SessionContext
 moRecord.Load 166

 REDataGrid1.Init REApplication.SessionContext
 Set REDataGrid1.DataCollection = oRecord.Gifts
 REDataGrid1.Refresh

End Sub

Private Sub Form_Unload(Cancel As Integer)

 REDataGrid1.CloseDown

End Sub

ES S EN T I A LS 41
There are also events associated with the grid that allow your end-users to open records from the data grid. For
example, there is a double-click event that passes the ID of the selected record, so you can load and display the
record. The following code is an example of this.

Private Sub REDataGrid1_DoubleClick(ByVal lSelectedID As Long)

 Dim oGiftForm As CGiftForm
 Set oGiftForm = New CGiftForm
 oGiftForm.Init REApplication.SessionContext

 Dim oGift As CGift
 Set oGift = New CGift
 oGift.Init REApplication.SessionContext

 'This uses the ID that is passed by the event to load the correct gift
 oGift.Load lSelectedID

 Set oGiftForm.GiftObject = oGift
 oGiftForm.ShowForm False, Me, True

 'Clean up!
 oGift.CloseDown
 Set oGift = Nothing

 oGiftForm.CloseDown
 Set oGift = Nothing

End Sub

CH A P T ER 142
Attributes Grid
Unlike the Selection List, the Attributes grid allows you to display attributes and enables your end-user to make
changes to those attributes.

ES S EN T I A LS 43
To use the grid, you must first initialise it using the familiar Init method. Next, you need to pass the grid the
collection of attributes to be displayed using the AttributeCollection property. Lastly, have the grid refresh itself
using the Refresh method. When you finish with the grid (probably when the form unloads), call the CloseDown
method, in order to free up the memory associated with the grid. The following code is an example.

This is all you need to display a list of attributes. It is important to remember the attribute collection and the grid do
not automatically update when one changes. For example, if attributes are added to the collection, the grid does not
automatically display those new attributes. In this case, you need to call the Refresh method again. This method
updates the grid with the current information from the attributes collection. If your end-user makes changes to the
attributes listed on the grid, these changes do not automatically update in the collection. In order to save those
changes, call the SaveGridToCollection method. This updates the collection with the end-user’s changes. To
actually save the records to the database, you need to call the Save method for the Parent record of the attributes
collection. Use the following code sample to do this.

Option Explicit

Private moRecord as CRecord

Private Sub Form_Load()

 Set moRecord = new CRecord
 moRecord.Init ReApplication.SessionContext
 moRecord.Load 166

 With REAttributeGrid1
 .Init REApplication.SessionContext
 Set .AttributeCollection = oRecord.Attributes
 .Refresh
 End With

End Sub

Private Sub Form_Unload(Cancel As Integer)

 REAttributeGrid1.CloseDown

End Sub

'This updates the oRecord.Attributes collection with
 ' the user's changes to the grid
 REAttributeGrid1.SaveGridToCollection

 'The changes are not saved to the database until the
 ' parent record is saved
 On Error GoTo ErrorHandler
 oRecord.Save
 On Error GoTo 0

CH A P T ER 144
The Attributes grid also has a method that handles situations if invalid data is in the collection when it is saved.
For example, if an invalid date is entered for an attribute, a trappable error is generated when you save the parent
record. By using the HandleError method, you can restore focus to the invalid field. The following code is an
example of how to do this.

ErrorHandler:

 'This will display a message box, so the user will know what the error is
 MsgBox Err.Description

 'This checks to see if the error is caused by the data in a data object
 If Err.Number = bbErr_DATAOBJECTERROR Then

 'This uses the ErrorObject to determine which part of the record
 ' caused the error
 If TypeOf moREApi.SessionContext.ErrorObject.InvalidObject _
 Is IBBAttribute Then
 'When we pass the Err.Number it will return focus to the
 ' incorrect field on the grid
 REAttributeGrid1.HandleError Err.Number
 End If

 End If

ES S EN T I A LS 45
Phones/Email/Links Grid
The Phones/Email/Links grid has many features in common with the Attributes grid. They are both designed to
enable the user to input or update information. They also have many of the same properties and methods; therefore,
much of the code is familiar. The Phones/Email/Links grid automatically formats phone numbers according to the
format specified in Configuration.

Service Objects
The Raiser’s Edge is built on a foundation of programmable objects that provide a high level abstraction over
The Raiser’s Edge data model. UI objects enable programmatic access to the system’s data entry forms. The wide
range of data and UI objects all share a common programming interface. While these objects represent the heart of
the system, there is a lot more to The Raiser’s Edge than just data and UI components.
Other objects enable access to discrete functionality within the application. These objects cannot specifically be
categorised because they each provide a service via their own unique programming interface. To help organise
these entities, Blackbaud’s object model refers to them as Service Objects.
In this section we review the service objects exposed by The Raiser’s Edge and examine the mechanics of
programming them. It is likely that service objects are called upon frequently as you tackle various development
tasks with the system. For example, with the Query service object you can access pre-existing queries, so you can
work with the query’s result set, opening up a wide range of reporting and data analysis possibilities.

CH A P T ER 146
Query Objects
A query object is referred to a group of objects that provide query functionality in The Raiser’s Edge object model.
These objects include:

• CQueryObject
• CQueryObjects
• CQuerySet
• CStaticQ

These four objects allow programatic access to existing queries, access to the output of a query, and the ability to
create a new static query that can be used elsewhere in The Raiser’s Edge. A solid understanding of these objects
work goes along way to making your projects faster and more efficient.

Opening a Query
Opening an existing query is quite easy and similar to the data objects that you learned about previously. You
access information about a query through the CQueryObject. First, you must initialise the object and then load it.
Like data objects, there is a Load method if you know the database ID of the query. There is also a CQueryObjects
collection you can loop through to find the correct query. After you load the query, you can access its result set.
The following code sample shows how this is done.

Processing a Query Result Set
By processing a query result set, you can move line-by-line through the results of a query. You can access a query
result set in two ways.
If we are already using a CQueryObject, we can access its resultset by using the Queryset method:

Dim oQuery as CQueryObject
 Set oQuery = New CQueryObject

 oQuery.Init REApplication.SessionContext

 'Load the query using the Query name
 oQuery.LoadByField uf_QUERY_NAME,"Major Donors Query"

 'Load the query using the Database ID
 oQuery.Load 5

Dim oQueryObject as CQueryObject
 Set oQueryObject = New CQueryObject

 oQueryObject.Init REApplication.SessionContext

 'Load the using the Query name

 oQueryObject.LoadByField uf_QUERY_NAME,"Major Donors Query"

 'This opens the resultset for access

 oQueryObject.QuerySet.OpenQuerySet

ES S EN T I A LS 47
Or, if you know the query’s database ID, you can start with a CQueryset object.

Both of these examples accomplish the same task. In either case, we have a reference to a query resultset. You can
use a few properties that help to actually access the data from the result set:

Code Sample

Creating Static Queries
You can create queries through code by using the CStaticQ query service object. Static queries are lists of unique
IDs. If you create a static query via code, you cannot open it in Query because it has no sort, filter, or output fields.
Other queries, and any process that uses a query (such as Mail or Reports) can use static queries. Static queries are
ordered and have no duplicates. To create a static query, you use 3 methods and the Init and CloseDown methods
that you use with every object.

Dim oQuerySet as CQuerySet
 Set oQuerySet = New CQuerySet

 oQuerySet.Init REApplication.SessionContext

 'This uses the database ID of the query

 oQuerySet.QueryID = 10

 'This opens the resultset for access

 oQuerySet.OpenQuerySet

Property Returns

FieldCount The number of fields in the output of the query

FieldName An array of the field names in the output

FieldType An array of the field type (for example, Date, Double, Long, Memo, Text)

FieldValue An array of the actual data for the current row

RowNum The number of the current row.

Debug.Print oQuerySet.FieldName(1) & " " & oQuerySet.FieldName(2)

 Do While Not oQuerySet.EOF

 'This is where you would access the fields

 Debug.Print oQuerySet.FieldValue(1) & " " & oQuerySet.FieldValue(2)
 oQuerySet.MoveNext
 Loop

 'Clean up

 oQuerySet.CloseDown
 Set oQuerySet = Nothing

CH A P T ER 148
1. Use the Create method to create a new query. This method displays the same Create Query form used in
The Raiser’s Edge. The end-user can specify the name of the query and other information about the query.
The Create method returns a False if the user clicks Cancel. You should abort your process in this case.The
following table shows the parameters for the Create method.

2. To add the database IDs of the records you want to include in the query, use the AddRecord method and
pass the ID as the only parameter. The AddRecord method checks to make sure it is not a duplicate ID and
then adds it to the query. This is the only step required to add a record to the query.

3. To finish creating the query and write the information to the database, call the EndCreate method. Until
this is called, the IDs are just stored in memory. EndCreate has three parameters:

• FormToCenterOn accepts an object. When EndCreate is called, it normally displays a Writing Static Records
form while it is writing the IDs to the database. This parameter specifies the form on which you would like the
Writing Static Records form to center itself.

• bCancel is an optional parameter that defaults to False if nothing is passed. If your code allows the end-user to
cancel the creation of the query after the Create method is called, it is important to call the EndCreate method
and pass True for this parameter. The query is not created, but this frees the memory used to track the IDs for
the query.

• bNoUI is an optional parameter. For the program not to display the Writing Static Records, set this to True.

Parameter Variable Type Description

SearchType bbSearch Types Determines the type of the query. For example, what types of
records are included

aFromProcess Name String Each query stores from the area of the program it was
created. You may put the name of your application here.

FormToCenter On Object The Create Query form displays itself centered over the
object specified here.

sDescription String Optional: Allows you to input a default Description for the
new query.

lSystemID Long Included in parameters, but not applicable.

sDefaultQName String Optional: Allows you to input a default Query name for the
new query.

ES S EN T I A LS 49
This code sample loops through the records to find the ones you need if want a query of couples in the database
who have different surnames from each other.

Dim oRecord2 As CRecord
Set oRecord2 = New CRecord
Dim oRecord1 As CRecord
Set oRecord1 = New CRecord
Dim oRecords As CRecords
Set oRecords = New CRecords
oRecords.Init oAPI.SessionContext
Dim oStaticQuery As CStaticQ
Set oStaticQuery = New CStaticQ

oRecord2.Init oAPI.SessionContext
oStaticQuery.Init oAPI.SessionContext
'This will prompt the user for a Query Name but
' everything will already be filled in
If oStaticQuery.Create(SEARCH_CONSTITUENT, "Custom App", Nothing, _
 "List of couples who have different last names", , _
 "Spouses W\Different Last Names") Then
 For Each oRecord1 In oRecords
 'This checks first to see if they even have a spouse on their record
 If Val(oRecord1.Fields(RECORDS_fld_SPOUSE_ID)) > 0 Then
 oRecord2.Load oRecord1.Fields(RECORDS_fld_SPOUSE_ID)

 If oRecord1.Fields(RECORDS_fld_SPOUSE_ID) <> "" Then
 'Compares the constituent's last name with the spouse's last name
 If oRecord1.Fields(RECORDS_fld_LAST_NAME) <> _
 oRecord2.Fields(RECORDS_fld_LAST_NAME) Then
 'This adds this ID to our query
 oStaticQuery.AddRecord oRecord2.Fields(RECORDS_fld_ID)
 End If
 End If
 End If
 oRecord1.CloseDown
 Next oRecord1
 Set oRecord1 = Nothing
 oRecords.CloseDown
 Set oRecords = Nothing
 'Once we have all our records in our query,
 ' we write the data to the database
 oStaticQuery.EndCreate Nothing, False, False
 oStaticQuery.CloseDown
 Set oStaticQuery = Nothing
Else
 'This means the user canceled when entering the query name
 MsgBox "No query created", vbOKOnly
End If

CH A P T ER 150
Report Objects
Report objects are a group of objects that work together to provide the ability to access Raiser’s Edge Reports and
Mail functionality through code. Since the mail functions also use Crystal Decision’s Crystal Reports, it makes
sense to provide one set of objects that can be used to print reports and process mail functions.
These objects appear in a hierarchy that represent the way they are accessed in The Raiser’s Edge. When you
access Reports, you are presented with a list of categories, such as Financial Reports. After you click the category,
you are given a list of the different types of reports in that category, such as the Gift Entry Validation. When you
create a new report, a screen opens containing tabs on which you define parameters for a report. Report objects
follow the same hierarchy; however, depending on the needs of your project, you can enter the object model from
any object.and create each class independently. You do not directly create report objects as you do the other
objects. In order to create a new ReportCategories or ReportCategory object, use the REServices object.

In this hierarchy, IBBReportCategories is a collection of IBBReportCategory objects. These represent the
categories of Reports or Mail options present in The Raiser’s Edge (such as Financial Reports, Action Reports,
or Letters in the Mail section).
The next level is the IBBReportTypes and the IBBReportType objects; these represent the specific reports (such as
the Gift Entry Validation and Action Detail Report, or Follow-up Letters in Mail).
The last level of the hierarchy is the IBBReportInstances and IBBReportInstance objects. These correspond to the
individual parameter files that you can save for each report. When you are at this level, you can allow your
end-user to preview or print the report or even create a new set of parameters for the report type. The next three
sections review each of these objects in detail.

Reports Categories Collection
The Raiser’s Edge Reports and Mail breaks down by similar functionality into categories such as Financial
Reports, Pledge Reports, and Forms (in Mail). Each one of these categories is represented by an
IBBReportCategory object. Use the REService object to create both IBBReportCategories and IBBReportCategory
objects (for more in formation, see the following “Report Objects Sample” on page 55). After you create an
IBBReportCategories collection, use the Init method. This is similar to the Init method used for other objects to
initialise them. However, in this case, there are other parameters (see the following table).

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext
used to initialise all objects.

lSubCategoryOfCategoryID Long Optional: This is not used but is
included for future expandability.

ES S EN T I A LS 51
When you initialise the IBBReportCategories collection, you can use a “For Each” construct to loop through it or
use the Item property to access the IBBReportCategory objects in the collection.
If you enter the Report hierarchy directly from an IBBReportCategory object, you need to Init it first. Some Init
parameters for the IBBReportCategory are similar to the parameters for the IBBReportCategories, but they work
differently. The IBBReportCategory object contains a ReportTypes method. This returns a IBBReportTypes
collection of IBBReportType objects. The ShowMembersBasedOnSecuritySettings and ShowCannedReportsOnly
parameters filter the IBBReportType objects included in the IBBReportCategory.ReportTypes collection.

CategoryFilter EReR_ReportCategoryFilters Optional: This is used to specify
Reports, Mail, or both
IBBReportCategory objects in the
collection. This defaults to include
Report IBBReportCategory objects
only.

QueMode Boolean Optional: This establishes how
errors are handled when using the
collection. If it is set to True, a log
file is created containing any
errors, but the program continues
to process. If set to False (which is
the default) a trappable error is
raised.

ShowMembersBasedOnSecuritySettin
gs

Boolean Optional: Use this to include
IBBReportCategory objects in the
collection an end-user has the
security to view. If set to False, the
collection includes all objects,
regardless of the users security.
However, at any point the end-user
would still be unable to run a report
they did not the security to access.
This defaults to True.

ShowCannedReportsOnly Boolean Optional: There are some
IBBReportCategory objects that
represent reports not accessed via
Reports, such as query control
reports or Global Add reports. If
this is set to True (the default), only
the IBBReportCategory objects
that represent categories found in
Reports are in the collection.

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to
initialise all objects.

CategoryID EReR_ReportCategories This is a Enum of all the different categories
of reports using in the Raiser’s Edge.

Parameter Variable Type Description

CH A P T ER 152
When you initialise the object, you can access the ReportTypes property to move farther down the hierarchy of
Report objects. For more information, see the “Report Objects Sample” on page 55 for an example of how to create
and use these objects. Refer to Programming Reference to learn more about the other properties and methods of
these two objects.

Reports Types Collection
You can access collections and objects that represent the highest level of the Reports hierarchy—the Report
Categories. First, use the REServices object to create either an IBBReportTypes or IBBReportType object (see
“Report Objects Sample” on page 55). Next, call the Init method. The Init method has some parameters that can
filter the IBBReportType objects to be included in the collection (see the following table).

QueMode Boolean Optional: This establishes how errors are
addressed when using the object. If it is set
to True, a log file is created containing any
errors, but the program continues to process.
If set to False (which is the default) a
trappable error is raised.

ShowMembersBasedOnSecuritySettings Boolean Optional: Use this to include only the
IBBReportCategory.ReportTypes collection
objects an end-user has the security to view.
If set to False, the collection includes all
objects, regardless of the user’s security.
However, at any point the user is unable to
run a report he did not have the security to
access. This defaults to True.

ShowCannedReportsOnly Boolean Optional: Some IBBReportType objects
represent reports that are not accessed via
Reports. If set to True (which is the default),
only the IBBReportType objects that
represent reports found in Reports is
included in the
IBBReportCategory.ReportTypes
collection.

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to
initialise all objects.

CategoryID EReR_ReportCategories This is a Enum of all Report categories so
only ReportTypes that are a part of this
category are included in the collection.

QueMode Boolean Optional: This establishes how errors are
addressed when using the object. If set to
True, a log file is created containing any
errors, but the program continues to process.
If set to False (which is the default) a
trappable error is raised.

Parameter Variable Type Description

ES S EN T I A LS 53
After initialising the IBBReportTypes collection, you can iterate through the collection or select an
IBBReportType object by using the Item method.
If you already know the type of report you want to access, enter the report hierarchy at the IBBReportType object.
As always, call the Init method and provide a couple of parameters in order to access the correct report (see the
following table).

When the IBBReportType object is initialised, you can access its read-only properties to get more information
about this particular report. It also has a ReportInstances property so you can access the last levels of the Report
hierarchy. Here, you can actually process a report.

Report Instances Collection
It is only at the lowest level of the Report object hierarchy that you can process a report. Using the
IBBReportInstances and IBBReportInstance objects you can access any parameter files already created and allow
end-users to create new ones using the same forms they are used to seeing in The Raiser’s Edge.

ShowMembersBasedOnSecuritySettings Boolean Optional: This includes only the
IBBReportCategory.ReportTypes collection
objects an end-user has the security to view.
If this is set to False, the collection includes
all objects, regardless of the users security.
However, at any point the user is unable to
run a report he does not have the security to
access. This defaults to True.

ShowCannedReportsOnly Boolean Optional: Some IBBReportType objects
represent reports that are not accessed via
Reports. If this is set to True (which is the
default), only the IBBReportType objects
that represent reports found in Reports are
included in the
IBBReportCategory.ReportTypes
collection.

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to initialise all
objects.

CategoryID EReR_ReportCategories This is a Enum of all the Report types so you can specify
which report to access.

ShowOnlyMyReports Boolean Optional: This establishes how errors are addressed
when using the collection. If set to True, a log file is
created containing any errors, but the program continues
to process. If set to False (which is the default) a
trappable error is raised.

Parameter Variable Type Description

CH A P T ER 154
The IBBReportInstances object is a collection that represents all the parameter files for a particular type of report.
As with the Report objects, it is created using the REServices object (see “Report Objects Sample” on page 55).
When you create the object, use the Init method to initialise it. The following table shows the parameters for the
Init method.

After you initialise the collection, you can use any standard process to iterate through the collection.
If you use the IBBReportInstance object to enter the hierarchy, use the Init method. The following table shows the
parameters for the Init method.

After you initialise an IBBReportInstance, you can either load an existing parameter file or create a new one. To
load an existing IBBReportInstance, all you need to know is the ReportParameterID, which is the database ID of
the parameter file. After you use the Load method, or if you are creating a new parameter file, call the Process
method. The following table explains the parameters for this method.

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to initialise all
objects.

ReportTypesID EReR_ReportCategories This is a Enum of all the Report types so only
ReportInstances for the type specified here are included
in the collection.

QueMode Boolean Optional: This establishes how errors are addressed
when using the object. If set to True, a log file is created
containing any errors, but the program continues to
process. If set to False (which is the default) a trappable
error is raised.

ShowOnlyMyReports Boolean Optional: If set to True, the collection contains only
IBBReportInstances objects that represent parameter
files created by the end-user. If set to False (the default),
all parameter files available to the end-user are
represented in the collection.

Parameter Variable Type Description

SessionContext IBBSessionContext This is the same SessionContext used to initialise all objects.

QueMode Boolean Optional: This establishes how errors are addressed when using the
object. If set to True, a log file is created containing any errors, but the
program continues to process. If set to False (which is the default) a
trappable error is raised.

Parameter Variable Type Description

Action EReR_ProcessOptions This is an Enum of the process options available.

ShowModal Boolean Optional: This determines if the Process form (this varies
depending on the action) is displayed modally. This defaults to
False.

FormToCenterOn Object Optional: This determines which object the Process form
displays.

ES S EN T I A LS 55
The Process method supports a number of actions that are enumerated as EReR_ProcessOptions. These include
ReR_ProcessOption_ShowParameterForm which shows the parameter form for the particular report type you are
using. If you have not called the Load method, a new parameter form displays that allows the end-user to complete
the parameters and save and run the report from the parameter form. If you have called the Load method, the form
appears with the parameters already displayed, allowing an end-user to edit the parameters and run the report. If
you do not want to display the parameters, you can use the other EReR_ProcessOptions to directly print, print
preview, export, send as mail, or view the report layout. The Process method returns a Long integer which is a
unique handle to a Crystal Report file. This is used internally by The Raiser’s Edge for the Web and can be
disregarded. For more information about other properties and methods available, see Programming Reference.
It is important that when you finish using an IBBReportInstance that you call the CloseDown method. Even though
it may return False, indicating that it cannot be closed at this time, it sets an internal flag and cleans everything as
soon as the end-user closes the report. For example, after you call the Process method with an action of Preview,
you can call the CloseDown. When the user closes the preview window or exits the application, the object releases
the resources it was using. However, you should make sure you do not need to access any property or method from
the object. Once CloseDown is called, the object acts as if it is closed down, even if the preview window or
parameter form still displays.

Report Objects Sample
This code sample illustrates how to use the Report objects. In this example, you add all the possible report
categories, types, and instances to a treeview.

RunFromWeb EReR_WebReportType Optional: This is used internally for the The Raiser’s Edge for
the Web. This parameter should be left blank.

Option Explicit

Private REService As REServices

Private Sub Form_Load()

 Dim oReportCategories As IBBReportCategories
 Dim oReportCategory As IBBReportCategory
 Dim oReportTypes As IBBReportTypes
 Dim oReportType As IBBReportType
 Dim oReportInstances As IBBReportInstances
 Dim oReportInstance As IBBReportInstance

'This is the class that we use to create the Report objects
 Set REService = New REServices
 REService.Init REApplication.SessionContext

 Set oReportCategories = REService.CreateServiceObject(bbsoReportCategories)

 oReportCategories.Init REApplication.SessionContext, , _
 ReR_ReportCategoryFilter_Reports, False, True, True

For Each oReportCategory In oReportCategories

Parameter Variable Type Description

CH A P T ER 156
Use Report objects to display parameters for the report instance an end-user selects so she can change parameters.
She can print, print preview, or save changes (or select any other option available) in Reports.

TreeView1.Nodes.Add , , oReportCategory.CategoryName, _
 oReportCategory.CategoryName

 'You could also use oReportCategory.ReportTypes
 Set oReportTypes = REService.CreateServiceObject(bbsoReportTypes)
 oReportTypes.Init REApplication.SessionContext, _
 oReportCategory.CategoryID, False, True, True

 For Each oReportType In oReportTypes
 TreeView1.Nodes.Add oReportCategory.CategoryName, _
 tvwChild, "Type" & Str$(oReportType.ReportID), _
 oReportType.ReportName

'You could also use oReportTypes.ReportInstances
 Set oReportInstances = _
 REService.CreateServiceObject(bbsoReportInstances)
 oReportInstances.Init REApplication.SessionContext, _
 oReportType.ReportID, False, False

 For Each oReportInstance In oReportInstances

With oReportInstance
 TreeView1.Nodes.Add "Type" & Str$(oReportType.ReportID), _
 tvwChild, _
 Str$(.Property(ReR_Property_ReportParameterNamesID)), _
 .Property(ReR_Property_Name)

 .CloseDown
 End With
 Next oReportInstance
 Next oReportType
 Next oReportCategory
End Sub

ES S EN T I A LS 57
When the parameter for displays, an end-user can do anything she would normally do in The Raiser’s Edge
without additional code.

Code Tables Server
In The Raiser’s Edge, a code table is a list of acceptable values for a particular data field. The end-user must select
from the list or if he has security, add a new entry to the list. Code tables are used extensively throughout
The Raiser’s Edge. The end-user’s ability to select an entry from a specific list of options simplifies data entry,
minimises typing, and helps to maintain consistency in data entry. You can reduce the size of the database by
storing the number that relates to the table entry rather than the actual text. The CodeTablesServer object provides
many methods that make using code tables much easier.
First, create an instance of the CodeTablesServer by using the REServices object. Next, call the Init method and
provide the SessionContext. Once you have done this, you can use any of the object’s methods and a collection of
CodeTable objects that contain information about all code tables in the program. Because there may be many
opportunities to use CodeTablesServer, you may want to place this initialisation code in the Form_Load. When you
no longer need the object, call the CloseDown method. You can place this in the Form_Unload.

Private Sub TreeView1_DblClick()

 Dim lKey As Long

 'This makes sure that they have chosen an
 ' Instance and not a Type or Category
 If Left$(TreeView1.SelectedItem.Key, 8) = "Instance" Then

 Dim oReportInstance As IBBReportInstance

 'This uses the Key from the parent (the Report Type) to specify what Type
 ' of report this is.

 lKey = Int(Mid$(TreeView1.SelectedItem.Parent.Key, 5))

 Set oReportInstance = REService.CreateReportInstance(lKey)
 oReportInstance.Init REApplication.SessionContext

 'This uses the Key from the Instance to Load the correct parameter file
 oReportInstance.Load Int(Mid$(TreeView1.SelectedItem.Key, 9))

 'This displays the Parameter form, at this point the user can do
 ' anything available in the Raiser's Edge.
 oReportInstance.Process ReR_ProcessOption_ShowParameterForm, False, Me
 'At this point, we no longer need to access oReportInstance so we
 ' call CloseDown, it will not be able to close but will close as
 ' soon as the user closes the parameter form or exits the app.
 oReportInstance.CloseDown

 End If

End Sub

CH A P T ER 158
The LoadCombo method in the CodeTablesServer is a simple way to load a Visual Basic combo box with the
entries for a particular code table. The following table shows the parameters for this method and the following
“Code Sample” on page 59 is an example using this method.

Parameter Variable Type Description

oCombo Object This is the combo box you want to load.

lTableNumber ECodeTableNumbers This is an Enum of all of code tables available in The Raiser’s
Edge.

bUseShort Boolean Optional: Some code tables have short, long, or both descriptions.
Normally, the long description is used. However, if you need to
use the short description, set this to True. False is the default.

bActiveOnly Boolean Optional: In The Raiser’s Edge, you can mark table entries
Inactive if they are not likely to be used anymore. If this is set to
True (which is the default), only entries that are not flagged as
Inactive appear.

bClearCombo Boolean Optional: If set to True (which is the default), any entries in the
combo box are removed before the combo loads.

ES S EN T I A LS 59
Code Sample

If you provide database ID, you can use the GetTableEntryDescription method to get the table entry description. If
you provide the table entry description, use the GetTableEntryID to obtain table entry IDs.

Option Explicit

Private moREService As REServices
Private moCodeTablesServer As CCodeTablesServer

Private Sub Form_Load()

 'This is the class that we use to create the service objects
 Set moREService = New REServices
 moREService.Init REApplication.SessionContext

 'This creates an instance of the CodeTableServer
 Set moCodeTablesServer = REService.CreateServiceObject(bbsoCodeTablesServer)
 moCodeTablesServer.Init REApplication.SessionContext

 'This loads the combo with the entries from the Marital Status table
 moCodeTablesServer.LoadCombo Combo1, tbnumMaritalStatus, False, True, True

End Sub

Private Sub Form_Unload(Cancel As Integer)

 moCodeTablesServer.CloseDown
 set moCodeTablesServer = Nothing

End Sub

Dim lLong As Long
Dim sString As String

'lLong will equal the database ID for the entry
' "Single" in the MaritalStatus table. However this number
' will vary from database to database.
lLong = oCodeTablesServer.GetTableEntryID("Single", tbnumMaritalStatus, False)

' sString will equal "Single"
sString = oCodeTablesServer.GetTableEntryDescription(lLong, tbnumMaritalStatus, False)

CH A P T ER 160
Table Lookup Handler
The TableLookupHandler object works together with the “Code Tables Server” on page 57 to provide the code
table functionality present in The Raiser’s Edge. With the TableLookupHandler, you can add a new entry to a code
table and display the table entry maintenance form. This form allows the end-user to add, delete, or reorder code
table entries.

Use the REService object’s CreateServiceObject method to create an instance of the object. Call the Init method.
Other than providing the usual SessionContext, you can also provide a reference to an existing CodeTablesServer
object. This is not required, but if provided, speeds up the initialisation process. As with the CodeTablesServer, it is
best to place this in your Form_Load, so that it is available throughout the form. The CloseDown method can be
placed in the Form_Unload to release all resources when you are finished.
To display the maintenance form so that an end-user can to select, add, delete, and sort table entries, call the
ShowForm method.

Before you display this form, you can set two properties that influence how the form displays. If the ReadOnly
property is set to True, the end-user is not able to use the form to add, delete or sort the table entries. If the
ShowInactiveEntries property is set to True, the Inactive table entries are included on the form. The Canceled
property returns a boolean telling you if the end-user selects to cancel the form. The SelectedItem property returns
the database ID of the table entry the end-user selected. If no item is selected, it returns a 0. If an error occurs, the
property returns -1. In The Raiser’s Edge, if an end-user double-clicks the Label for a table entry field, the
maintenance form displays. The following “Code Sample” on page 61 shows an example of how this functionality
might be implemented.

Parameter Variable Type Description

lCodeTableID ECodeTableNumbers This is the ID for the particular code table you want to display.

lFindItemData Long Optional: This is the database ID for the table entry you want to
have focus when the form displays.

oFormToCenterOn Object Optional: This is a reference to the maintenance form you want
to display.

ES S EN T I A LS 61
Code Sample

With the TableLookupHandler object, you can add new table entries to the table throughout the program by using
the AddEntry method. When this method is called, the new entry is immediately added to the database. The
following table shows the parameters for this method and the following “Code Sample” on page 63 shows an
example.

Option Explicit

Private moCodeTablesServer As CCodeTablesServer
Private moTableLookupHandler As CTableLookupHandler

Private Sub Form_Load()

 'Since the TableLookupHandler uses a CodeTablesServer object,
 ' we can create it first.
 Set moCodeTablesServer = REService.CreateServiceObject (bbsoCodeTablesServer)
 moCodeTablesServer.Init REApplication.SessionContext

 Set moTableLookupHandler = REService.CreateServiceObject(bbsoTableLookupServer)
 'We pass the reference to oCodeTablesServer to speed the Init process.
 moTableLookupHandler.Init REApplication.SessionContext, moCodeTablesServer

End Sub

Private Sub Label1_DblClick()

 moTableLookupHandler.ReadOnly = True
 moTableLookupHandler.ShowInactiveEntries = True

 'By setting sFindItemData, if there is already a table entry in
 ' the combo box, that entry will have focus, when the form is displayed.
 moTableLookupHandler.ShowForm tbnumMaritalStatus, _
 moCodeTablesServer.GetTableEntryID(Combo1.Text, tbnumMaritalStatus), Me

 'If the user cancels the maintenance form then we don't want to change
 ' what is already in the combo box.
 If Not moTableLookupHandler.Canceled Then
 'This uses the SelectedItem property to fill in the Combo box.
 Combo1.Text = moCodeTablesServer.GetTableEntryDescription _
 (moTableLookupHandler.SelectedItem, tbnumMaritalStatus, False)
 End If

End Sub

Parameter Variable
Type

Description

bAddOnTheFly Boolean This should be set to True so the new table entry immediately adds to the
database.

CH A P T ER 162
lCodeTableID Long Optional: This is the code table number for which the table entry
belongs. If this is not specified, the current code table set within
TableLookupHandler is used.

sShortDescription String Optional: This is the short description for this table entry.

sLongDescription String Optional: This is the long description for this table entry.

oForm Object Optional: The AddEntry method calls the specified object’s Refresh
method.

Parameter Variable
Type

Description

ES S EN T I A LS 63
Code Sample

Attribute Type Server
The AttributeTypeServer object provides access to a collection of methods used to gather information about any of
the attributes in The Raiser’s Edge. You can then use this information to use attributes on your custom forms.
Remember, depending on the design of your program, you may be able to use the “Attributes Grid” on page 42 to
display your attributes. Attributes in The Raiser’s Edge consist of a Category, Description, Date, and Comment.
When you create the attribute, the type of information contained in the Description is also defined. The
Description can be a date, a fuzzy date (an incomplete date), text, boolean, currency, number, a constituent name,
or a table. If the Description type is a table, you may want to use the “Code Tables Server” on page 57 and “Table
Lookup Handler” on page 60.

Private Sub Combo1_LostFocus()

 Dim sMsg as String

 If Len(Combo1.Text) > 0 Then

 With oCodeTablesServer

 'GetTableEntryID will return a 0 if the current text is not in
 ' the table.
 If .GetTableEntryID(Combo1.Text, tbnumMaritalStatus, False) = 0 Then

 sMsg = "Do you want to add '" & Combo1.Text & "' to the " & _
 .TABLENAME(tbnumMaritalStatus) & " table?"

 If MsgBox(sMsg, vbQuestion + vbYesNo) = vbYes Then
 'This adds the current text to the database and
 ' Refreshes Combo1. If the AddEntry is unsuccessful
 ' this will return False.
 If Not oTableLookupHandler.AddEntry(True, _
 tbnumMaritalStatus, , Combo1.Text, combo1) Then
 MsgBox "Unable to add entry", vbInformation + vbOKOnly
 End If

 Else
 'If they don't want to add to the table, then they need to
 ' pick something that is already on the list.
 Combo1.SetFocus

 End If

 End If

 End With

 End If

End Sub

CH A P T ER 164
First, use the REServices object to create a new instance of the AttributeTypeServer. After you create the object,
call the Init method, passing a valid SessionContext. As with the other service objects, we recommend you place
this in the Form_Load so these methods are available throughout your form. You must also call the CloseDown
method when you finish using the object, preferably in the Form_Unload. Once the object is properly initialised,
you can begin to use the object to gather information about attributes.
The GetAttributeTypeID method requires 2 parameters. The first parameter is a String which is the attribute
Category in The Raiser’s Edge. The second is an Enum of the different kinds of attributes (for example, Action,
Fund, Package). The method returns a Long that is the database ID for this particular attribute. Once you know the
attribute ID, you can use that ID to find out more information about the attribute. The opposite of this function is
the GetAttributeTypeDescription. If you pass the attribute ID, it returns the attribute category as a String. Using the
attribute ID, you can use the GetAttributeDataType method to find out what type of data is required for the
Description of a particular attribute. This method returns a number that corresponds to a member of the
bbAttributeTypes enum. The GetAttributeDataType method also accepts a boolean variable that is passed by
reference, bUniqueRequirement. After the method is called, the variable sets to True if this attribute type allows
only one attribute of this type per record.
If the data type for the attribute is a table, you may need to get the code table ID for the table. With this, you use the
“Code Tables Server” on page 57 and “Table Lookup Handler” on page 60 to simplify your coding. When the
GetAttributeCodeTableID method passes through the attribute ID, it returns the code table ID for the table.

ES S EN T I A LS 65
In this code sample, a label with the attribute category (in this case “Special Mailing Info”) and either a combo box
(if the attribute data type is table or boolean) or a text box (for all other data types) is displayed.

Option Explicit

Private moCodeTablesServer As CCodeTablesServer
Private moAttributeTypeServer As CAttributeTypeServer

Private Sub Form_Load()

 Dim lAttribute_ID As Long
 Dim bOnlyOneAllowed As Boolean

 REService.CreateServiceObject (bbsoCodeTablesServer)
 Set moCodeTablesServer = New CCodeTablesServer
 moCodeTablesServer.Init REApplication.SessionContext

 REService.CreateServiceObject (bbsoAttributeTypeServer)
 Set moAttributeTypeServer = New CAttributeTypeServer
 moAttributeTypeServer.Init REApplication.SessionContext

 With moAttributeTypeServer

 lAttribute_ID = .GetAttributeTypeID("Special Mailing Info", _
 bbAttributeRecordType_CONSTIT_ADDRESS)

 Label1.Caption = .GetAttributeTypeDescription(lAttribute_ID)

 'bOnlyOneAllowed will now be True or False depending on if this
 ' Attribute is allowed to be present more than once per record
 Select Case .GetAttributeDataType(lAttribute_ID, bOnlyOneAllowed)
 'If the Data Type is Boolean than we add Yes and No to the Combo box
 Case bbAttribute_BOOLEAN
 Combo1.Visible = True
 Combo1.AddItem "Yes"
 Combo1.AddItem "No"

 Case bbAttribute_TABLEENTRY
 Combo1.Visible = True
 'This uses the CodeTablesServer to the load the combo
 ' with all of the table entries
 moCodeTablesServer.LoadCombo Combo1, _
 .GetAttributeCodeTableID(lAttribute_ID), , True

 Case Else
 Text1.Visible = True

 End Select

 End With

End Sub

CH A P T ER 166
Annotation Form
In The Raiser’s Edge, end-users can annotate any of the top-level data objects. An annotation is a note that is
attached to each record. The end-user can select to have the note display when that record is loaded.

By using the Annotation Form service object, you can easily add this functionality to your custom applications.

Using the Annotation Form Object
1. Declare an object reference for the REServices object. Create a new instance of the REServices object and

use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialise it.

2. Declare an object reference for the CAnnotationForm object. Create a new instance of the
CAnnotationForm object.

3. Set the CAnnotationForm object equal to the REServices.CreateServiceObject method, passing the enum
constant bbsoAnnotationForm.

4. Initialise the CAnnotationForm object, using the Init method (remember to call the CloseDown method
when finished), passing a valid SessionContext.

ES S EN T I A LS 67
To display the form, call the ShowAnnotationForm method, passing the data object the annotation will be attached
to. If the data object that is passed does not support an Annotation form (for example, it is not a top-level object) a
trappable error is raised. You also must pass the form for which you would like the Annotation form to display.
This parameter is optional and if nothing passes, the form displays in the center of the screen. The Annotation form
displays modally and the end-user has the same options available in The Raiser’s Edge. After you are finished
using any Annotation forms in your project, call the CloseDown method to release all the resources being used by
the process. It is very important to remember that if the end-user edits the annotation and clicks Save on the form,
the new text is not saved to the database until you call the Save method for the data object. The following is a code
sample of this.

Dim REService As REServices
 Set REService = New REServices
 REService.Init REApplication.SessionContext

 Dim oAnnotationForm As CAnnotationForm
 Set oAnnotationForm = REService.CreateServiceObject(bbsoAnnotationForm)
 oAnnotationForm.Init REApplication.SessionContext

 Dim oRecord As CRecord
 Set oRecord = New CRecord

 oRecord.Init REApplication.SessionContext

 oRecord.LoadByField uf_Record_CONSTITUENT_ID, 6

 oAnnotationForm.ShowAnnotationForm oRecord, Nothing

 'Any changes that the user made on the Annotation Form
 ' are not saved until this is called.
 oRecord.Save

 'Clean up.
 oRecord.CloseDown
 Set oRecord = Nothing

 oAnnotationForm.CloseDown
 Set oAnnotationForm = Nothing

CH A P T ER 168
Notepad Form
In The Raiser’s Edge, three of the top-level data objects, Constituent, Gift, and Event allow the end-user to enter
multiple notepads for each record. These notepads all add via a common form. The Notepad form service object
provides the opportunity to incorporate this functionality into your programs.

Using the Notepad Form Object
1. Declare an object reference for the REServices object. Create a new instance of the REServices object and

use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialise it.

2. Declare an object reference for the CNotepad object. Create a new instance of the CNotepad object.
3. Set the CNotepad object equal to the REServices.CreateServiceObject method, passing the enum constant

bbsoNotepadForm.
4. Initialise the CNotepad object, using the Init method (remember to call the CloseDown method when

finished), passing a valid SessionContext.
Before you use the Notepad Form object, you must first set the NotepadObjects property to a valid collection of
Constituent, Gift or Event Notepads. If you want to display an existing Note then you can set the NotepadObjectID
equal to the database ID of the Note you want to display. If this property is not set to anything, a blank form
displays and new Note is created when the record saves. One area where the Notepad Form differs from other UI
forms is that you can select what appears on the caption of the form. This is accomplished by setting the
FormCaption property equal to the string you want to appear. When the form displays the caption will be “Notepad
For” concatenated with the string you passed.

Parameter Variable Type Description

oFormToCenterOn Object This is the object for which the Notepad form displays.

ES S EN T I A LS 69
To display the Notepad form, call the ShowForm method. When an end-user enters all of the data on the form and
has selects to save the notepad, the notepad information is not actually saved to the database. To save, call the
parent record’s Save method. The following is a code example of how this can be implemented.

oMoveServer IBBMoveServer Optional: This establishes how the “VCR” buttons on the form
function. This is covered in detail in Programming Reference.

bOKCancel Boolean Optional: If set to True (False is the default), the only options under
the File menu are: Save, Save & Close, Properties, and Close.

bViewOnly Boolean Optional: If this is set to True (False is the default), the user is able to
view the Notepad information, but not edit it.

Dim REService As REServices
 Set REService = New REServices
 REService.Init REApplication.SessionContext

 Dim oRecord As CRecord
 Set oRecord = New CRecord
 oRecord.Init REApplication.SessionContext
 oRecord.LoadByField uf_Record_CONSTITUENT_ID, 6

 Dim oNotepadForm As CNotepadForm
 Set oNotepadForm = REService.CreateServiceObject(bbsoNotepadForm)
 oNotepadForm.Init REApplication.SessionContext

 Set oNotepadForm.NotepadObjects = oRecord.Notepads

 'If this is not set, then a new Notepad will be created.
 oNotepadForm.NotepadObjectID = oRecord.Notepads.Item(1).Fields(NOTEPAD_fld_Id)

 'The caption on the form will read "Notepad for Ms Julie Marie Bach"
 oNotepadForm.FormCaption = oRecord.Fields(RECORDS_fld_FULL_NAME)

 'In this case, the form will displayed modally, with all File menu
 ' options and allow the user to edit the Note.
 oNotepadForm.ShowForm Nothing

 'The user's changes are not added to the database until this called.
 oRecord.Save

 'Clean Up!
 oRecord.CloseDown
 Set oRecord = Nothing

 oNotepadForm.CloseDown
 Set oNotepadForm = Nothing

Parameter Variable Type Description

CH A P T ER 170
Media Form
In The Raiser’s Edge, you can use the Media tab of a Constituent or an Event record to store various media files,
such as documents, bitmaps (graphics), and video files. With the Media form object, you can incorporate this
functionality into your custom applications.

Using the Media Form Object
1. Declare an object reference for the REServices object. Create a new instance of the REServices object and

use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialise it.

2. Declare an object reference for the CMediaForm object. Create a new instance of the CMediaForm object.
3. Set the CMediaForm object equal to the REServices.CreateServiceObject method, passing the enum

constant bbsoMediaForm.
4. Initialise the CMediaForm object, using the Init method (remember to call the CloseDown method when

finished), passing a valid SessionContext.
5. Set the CMediaForm.MediaObjects property equal to a valid collection of Media objects, such as

CRecord.Media.
At this point, the Media form object is ready to be used. If you want to display an existing media item, you can set
the MediaObjectID equal to the database ID of the Media item you want to display. If this property is not set to
anything, a blank form displays and a new Media item is created when the record saves. One difference in the
Media form from other UI forms you have seen is the ability to select what appears on the caption of the form .
This is accomplished by setting the NameForCaption property equal to the string you want to appear. When the
form displays, the caption is “Media For” concatenated with the string you passed.

ES S EN T I A LS 71
To actually display the Media form, you call the ShowForm method. The following table lists the parameters for
this method. Once the user completes the form and selects Save, the media item information is not saved to the
database yet. This is accomplished by calling the parent record’s Save method. The following code sample shows
how to implement this.

To display the Media form, call the ShowForm method. When an end-user completes the form and selects to save
the media item, information is not saved to the database. To save, call the parent record’s Save method.

Parameter Variable Type Description

oFormToCenterOn Object This is the object over which Media form displays.

oMoveServer IBBMoveServer Optional: This establishes how the “VCR” buttons on the form
function. This is covered in detail in Programming Reference.

CH A P T ER 172
Code Sample

Dim REService As REServices
 Set REService = New REServices
 REService.Init REApplication.SessionContext

Dim oRecord As CRecord
 Set oRecord = New CRecord
 oRecord.Init REApplication.SessionContext
 oRecord.LoadByField uf_Record_CONSTITUENT_ID, 6

 Dim oMediaForm As CMediaForm
 Set oMediaForm = REService.CreateServiceObject(bbsoMediaForm)
 oMediaForm.Init REApplication.SessionContext

Set oMediaForm.MediaObjects = oRecord.Media

 'If this is not set, then a new Media item will be created.
 oMediaForm.MediaObjectID = oRecord.Media.Item(1).Fields(MEDIA_fld_ID)

 'The caption on the form will read "Media for Ms Julie Marie Bach"
 oMediaForm.NameForCaption = oRecord.Fields(RECORDS_fld_FULL_NAME)

 'In this case, the form is displayed modally.
 oMediaForm.ShowForm Nothing

'The user's changes are not added to the database until this is called.
 oRecord.Save

 'Clean Up!
 oRecord.CloseDown
 Set oRecord = Nothing

 oMediaForm.CloseDown
 Set oMediaForm = Nothing

ES S EN T I A LS 73
Property Viewer
When using The Raiser’s Edge, different statistics are maintained “behind the scenes”. For example, when a Gift
record is created, the date and the user name of the end-user creating the record are stored in the database. If an
end-user wants to see this information, he can select File, Properties from the menu bar, and the form displays
showing the properties for the particular record type. The fields shown on the Property form vary depending on the
record type.

With the service object Property Viewer, you can display this form in your applications.

Using the Property Viewer
1. Declare an object reference for the REServices object. Create a new instance of the REServices object and

use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialise it.

2. Declare an object reference for the IBBPropertyViewer object. Create a new instance of the
IBBPropertyViewer object.

3. Set the IBBPropertyViewer object equal to the REServices.CreateServiceObject method, passing the enum
constant bbsoPropertyViewer.

4. Initialise the IBBPropertyViewer object, using the Init method (remember to call the CloseDown method
when finished), passing a valid SessionContext.

CH A P T ER 174
5. Display the Properties form by calling the ShowForm method, passing the data object you want to see the
properties for. You can also select the form to center the Properties form.

When you create the Property Viewer, you can use it repeatedly to display the Properties form for any type of
record. You may want to place the code that creates a new instance of the IBBPropertyViewer in your Form_Load.
Then, you can display the Properties form from anywhere on your custom form.

Dim REService As REServices
 Set REService = New REServices
 REService.Init REApplication.SessionContext

 Dim oRecord As CRecord
 Set oRecord = New CRecord

 oRecord.Init REApplication.SessionContext
 oRecord.LoadByField uf_Record_CONSTITUENT_ID, 6

 Dim oPropertyViewer As IBBPropertyViewer
 Set oPropertyViewer = REService.CreateServiceObject(bbsoPropertyViewer)
 oPropertyViewer.Init REApplication.SessionContext

 'This will display the properties for the Preferred Address
 ' for this Constituent. If the object that you pass doesn't
 ' support Properties, a trappable error will be raised.
 oPropertyViewer.ShowPropertyForm oRecord.PreferredAddress, Me

 'Clean Up!
 oRecord.CloseDown
 Set oRecord = Nothing

 oPropertyViewer.CloseDown
 Set oPropertyViewer = Nothing

ES S EN T I A LS 75
Search Screen
The search screen (on the UI, this is called the “Open” screen) is used extensively throughout The Raiser’s Edge.
For example, it is used any time the user needs to open a specific record or choose a query for a report. With the
search screen object, you can incorporate this functionality into your project. The search criteria and filters change
automatically based on the type of record, and you can also give your end-users the opportunity to create a new
record.

Using the Search Screen Object
1. Declare an object reference for the REServices object. Create a new instance of the REServices object and

use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialise it.

2. Declare an object reference for the IBBSearchScreen object. Create a new instance of the
IBBSearchScreen object.

3. Set the IBBSearchScreen object equal to the REServices.CreateServiceObject method, passing the enum
constant bbsoSearchScreen.

4. Initialise the IBBSearchScreen object, using the Init method (remember to call the CloseDown method
when finished), passing a valid SessionContext.

Because the search screen may be used multiple times in a single project, you may want to declare this as a global
or module level reference. You can call the Init when the form loads or when it is first used and then call the
CloseDown when the form unloads.

CH A P T ER 176
Before you display the search screen, you need to tell it what types of records you want to be available in the Find
combo frame. Call the AddSearchType method to add at least one search type before displaying the form. If you
want to have more than one type of record available, there are two syntax styles supported (see the following code
sample). If you have used the object previously, you may want to call the ClearSearchTypes method to clear any
existing search types.

Before you display the search screen form, you can set optional properties for the form. If you set the
AllowAddNew property to True, when the form displays, there is an Add New button present. However, you must
write the code that actually creates the new record. If you have added multiple search types, you can also set the
DefaultSearchType property to determine the initial search type when the form displays.
When you are ready to display the search screen, call the ShowSearchForm method. This displays the form
modally and returns False if the end-user clicks Cancel. When the end-user clicks any button that closes the form
(Open, Cancel or Add New), you need to find out what he has selected. The SelectedOption property returns the
button the end-user selected. The enum bbSearchScreenOption lists options, simplifying your programing. If
multiple search types were available, the SelectedSearchType property determines the search type the end-user
selected. This returns a value from the enum bbSearchTypes. The SelectedDataObject property returns a reference
to the actual data object the end-user selected. The following code shows an example of how you can use the search
screen object.

'Method 1
 oSearchScreen.AddSearchType SEARCH_CAMPAIGN
 oSearchScreen.AddSearchType SEARCH_FUND
 oSearchScreen.AddSearchType SEARCH_APPEAL

'Method 2
 oSearchScreen.AddSearchType SEARCH_CAMPAIGN,SEARCH_FUND,SEARCH_APPEAL

Private Sub UsingTheSearchScreen()

 Dim REService As REServices
 Set REService = New REServices
 REService.Init REApplication.SessionContext

 Dim oSearchScreen As IBBSearchScreen
 Set oSearchScreen = REService.CreateServiceObject(bbsoSearchScreen)
 oSearchScreen.Init REApplication.SessionContext

With oSearchScreen
 .ClearSearchTypes
 .AddSearchType SEARCH_CAMPAIGN, SEARCH_FUND, SEARCH_APPEAL
 .DefaultSearchType = SEARCH_CAMPAIGN
 .AllowAddNew = True

If .ShowSearchForm Then
 Select Case .SelectedSearchType

ES S EN T I A LS 77
Using the search screen object properly in your custom applications not only simplifies your coding, but also
provides a common interface for selecting records to your end-users. Other methods and properties available to use
with this form are explained in Programming Reference.

Case SEARCH_CAMPAIGN
 Dim oCampaign As CCampaign

 Dim oCampaignForm As CCampaignForm
 Set oCampaignForm = New CCampaignForm
 oCampaignForm.Init REApplication.SessionContext

 If oSearchScreen.SelectedOption = SRCH_FRM_OPEN Then
 Set oCampaign = oSearchScreen.SelectedDataObject
 Else
 Set oCampaign = New CCampaign
 oCampaign.Init REApplication.SessionContext
 End If

Set oCampaignForm.CampaignObject = oCampaign
 oCampaignForm.ShowForm True, Me, True

 oCampaignForm.CloseDown
 Set oCampaignForm = Nothing

 oCampaign.CloseDown
 Set oCampaign = Nothing

 Case SEARCH_FUND
 'Same as above except substitute Fund objects

 Case SEARCH_APPEAL
 'Same as above except substitute Appeal objects
 End Select

 End If

 'Clean Up!
 oSearchScreen.CloseDown
 Set oSearchScreen = Nothing

 REService.CloseDown
 Set REService = Nothing
End Sub

CH A P T ER 178
MiscUI
As the name implies, this object gives you access to miscellaneous forms and functions that are helpful in
designing your projects in The Raiser’s Edge. For example, using the PromptForDataObject method provides your
end-user with a simple form for selecting a record.

Using the MiscUI Object
1. Declare an object reference for the REServices object. Create a new instance of the REServices object and

use the Init method (remember to call the CloseDown method when finished), passing a valid
SessionContext to initialise it.

2. Declare an object reference for the IBBMiscUI object. Create a new instance of the IBBMiscUI object.
3. Set the IBBMiscUI object equal to the REServices.CreateServiceObject method, passing the enum

constant bbsoMiscUI.
4. Initialise the IBBMiscUI object, using the Init method (remember to call the CloseDown method when

finished), passing a valid SessionContext.
This object has a number of helpful methods, one of which is the PromptForDataObject. This provides a form for
your end-user to select a record. The method requires three parameters (see the following table) and returns a long
integer that is the database ID of the record that the end-user selected (or a zero if the end-user canceled). If the
search string the end-user enters in the textbox is not valid, he is automatically prompted with the standard search
screen or prompted to enter the search string information again.

Parameter Variable
Type

Description

lSearchType bbSearchTyp
es

This is an enum of the record types available for searching.

sObjectNameCaption String This is the string that appears to the left of the search string textbox. It
provides your end-user with an idea of the type of record she is
searching for.

sDescriptionCaption String This is the string that displays just below the title bar on the form.

ES S EN T I A LS 79
Another helpful method is the Quick Find method. If you provide a search string and the record type you want to
search, this method returns True if it was able to find a record with the search string. You can also pass two
variables by reference, representing the name and the database ID of the matching record. The following table lists
the parameters for this method.

Two methods that work similarly to provide a way to display the UI form for any data object are the
ShowUIForDataObject and the ShowUIForDataObjectO methods. ShowUIForDataObject accepts the database ID
of the record you want to display, but ShowUIForDataObjectO is passed a reference to the data object you want to
show. The following table shows the other parameters for these two methods. These work the same way for both
methods.

Parameter Variable Type Description

lObjectType bbDataObjConstants This is an enum of the record types available for searching
purposes. Note: Quick Find is designed to be used with
constituents, gifts, campaigns, funds, appeals, events, and banks
only.

sSearchString String This is the string you are searching for.

sFoundName String This is passed By Reference and is set to Name for the record
that is found.

lFoundID Long This is passed By Reference and is set to the database ID for the
record that is found.

bPromptIfNoMatch Boolean Optional: If this is set to True (which is the default) a message
box provides the end-user with the option to use the search
screen again if the search string is not found.

Parameter Variable Type Description

lDataObjectType bbDataObjConstants This is an enum of the record types available.

bModal Boolean If this is set to True the form is displayed modally.

lCallingHwnd Long Optional: You can pass a handle to a form and the method
verifies this form is not already loaded before displaying the new
form.

oMoveServer IBBMoveServer Optional: This establishes how the “VCR” buttons on the form
function. This is covered in detail in Programming Reference.

FormToCenterOn Object Optional: This is the object for which the UI form is centered.

CH A P T ER 180
Code Sample

These methods provide a simple way to incorporate powerful functions into your custom applications without
writing a lot of new code. There are other methods available through the MiscUI object. These are documented in
Programming Reference.

Advanced Concepts and Interfaces
Review this section to learn about the IBBDataObjectInterface, a powerful VBA tool that supports the use of
interfaces. You can also learn about the IBBMetaField interface, which provides a convenient way to find out and
change information about the individual data fields used in The Raiser’s Edge. Lastly, using transactions, you can
add or remove a number of items from a collection or make changes to the fields in a data object temporarily.

Dim sName As String
 Dim lID As Long

 Dim oRecord As CRecord
 Set oRecord = New CRecord
 oRecord.Init REApplication.SessionContext

 Dim REService As REServices
 Set REService = New REServices
 REService.Init REApplication.SessionContext

 Dim oMiscUI As IBBMiscUI
 Set oMiscUI = REService.CreateServiceObject(bbsoMiscUI)
 oMiscUI.Init REApplication.SessionContext

 'This uses Text1.Text as the search string for a constituent.
 If oMiscUI.QuickFind(bbdataConstituent, Text1.Text, sName, lID, False) Then
 oRecord.Load lID
 Else
 'This will display a form for the user to search for a constituent.
 IID = oMiscUI.PromptForDataObject(SEARCH_CONSTITUENT, "Constituent", _
 “Search for a Constituent”)
 If lID Then oRecord.Load lID
 End If

 'This will display the UI form for a constituent, if the user has not selected
 ' a valid record by now then a blank form will be displayed.
 oMiscUI.ShowUIForDataObjectO bbdataConstituent, oRecord, True, , , Me

 'Clean Up!
 oRecord.CloseDown
 Set oRecord = Nothing

 REService.CloseDown
 Set REService = Nothing

 oMiscUI.CloseDown
 Set oMiscUI = Nothing

ES S EN T I A LS 81
Using the IBBDataObject Interface
One of the powerful features of Visual Basic is that it supports the use of interfaces. Interfaces are advanced
programming techniques that provide a way for the Raiser’s Edge developers to make the program code more
efficient and easier to maintain. An interface is like a contract. Any class that implements a specific interface
guarantees the class supports a certain type of behavior. Many objects in The Raiser’s Edge object model
implement other interfaces. For example, all data objects, such as CGift, or CEducation, implement the
IBBDataObject interface. This provides a way for you to refer to any data object that implements IBBDataObject
in a generic fashion. Referring to the IBBDataObject interface gives you access to some properties and methods
that are not available when referring to the actual class.
By referring directly to the IBBDataObject interface, you can use the Initialised property to find out if an object has
been initialised. You can use the Dirty property to determine if an object has had changes made to it since it was
saved.
Another important property of the IBBDataObject interface is the ObjectName property. This returns the name of
the class of object you are using. One of the most important properties is the MetaField property. This provides
access to information about the types of data that any field expects and other important information. The below
code sample shows how to use interfaces to generically refer to objects. Notice that it includes a reference to the
IBBTopObject interface. All top-level objects implement this interface. Using this interface provides a way to refer
to and access the methods and properties common to all top level objects.

Private Sub UsingInterfaces(oTopObject As IBBTopObject)

 Dim oIBBDataObject As IBBDataObject
 Set oIBBDataObject = oTopObject

 'This makes sure that the object passed in has been initialised
 If Not oIBBDataObject.Initialized Then
 oTopObject.Init REApplication.SessionContext
 End If

 'Allows you to find out what class has been passed
 Select Case oIBBDataObject.OBJECTNAME
 Case "CAction"
 oIBBDataObject.Fields(ACTION_fld_NOTES) = "Test Note"
 Case "CGift"
 oIBBDataObject.Fields(GIFT_fld_Reference) = "Test Note"
 Case "CRecord"
 oIBBDataObject.Fields(RECORDS_fld_BIRTHPLACE) = "North Carolina"
 End Select

 If oIBBDataObject.Dirty Then oTopObject.Save

 'Clean Up!
 Set oIBBDataObject = Nothing

End Sub

CH A P T ER 182
Using the IBBMetaField Interface
The IBBMetaField interface provides a convenient way to find out and change information about the individual
data fields used in The Raiser’s Edge. For example, in designing your programs, you may need to know if a
particular field has been defined as required through Configuration in The Raiser’s Edge or you may need to know
the type of data a specific field requires (such as date, number, or percentage).
Every data object in The Raiser’s Edge object model provides an IBBMetaField interface to determine this
information. Each data object has a Fields property, array of the actual data in each field, and most of the properties
in the IBBMetaField interface return a similarly numbered array. This makes using the IBBMetaData and the
actual data object together much simpler. The following table displays the most commonly used properties and
what they represent.

You can set some of the properties through your program. For example, DisplayText, UserHidden, and
UserRequired can be changed. The Save method saves those changes to the database. The following code shows an
example of how you might use these properties to load an array of textboxes and accompanying labels and also
allow your end-user to change the Display Text by double-clicking on the label. Notice we use the “Using the
IBBDataObject Interface” on page 81 interface to return a reference to the IBBMetaField interface.

Parameter Variable Type Description

DisplayText String This returns the user-defined Display As text for this field.

FormatDescription EFormatDescriptors This returns the type of data contained in this field.

Required Boolean If returns True if the field is required.

UserRequired Boolean If returns True if this is a field the user has selected to make
required.

FormToCenterOn Object Optional: This is the object for which the UI form is centered.

ES S EN T I A LS 83
Code Sample

Option Explicit

Private moAction As CAction
Private moMetaField As IBBMetaField
Private moDataObject as IBBDataObject

Private Sub Form_Load()

 Dim i As Integer

 Set moAction = New CAction
 moAction.Init REApplication.SessionContext

 'Provides access to the IBBMetaField interface for the moAction object
 Set moDataObject = moAction
 Set moMetaField = moDataObject.MetaField

For i = 1 to moMetaField.Count

 'If the field should be hidden we want to skip it.
 If Not moMetaField.UserHidden(i) Then
 'This is determined in Configuration.
 Label1(i).Caption = moMetaField.DisplayText(i)

 'You need to check if it is system-required or
 ' if it is user-required.
 If moMetaField.Required(i) Or moMetaField.UserRequired(i) Then
 Label1(i).ForeColour = vbRed
 End If

If moMetaField.FormatDescriptor(i) = fmtAMOUNT Then
 Text1(i).Text = "$" & Text1(i).Text
 End If
 End If
 Next i
End Sub

Private Sub Label1_DblClick(Index As Integer)

 Dim s As String
 s = InputBox("Enter the new Display Text")

If Len(s) Then
 moMetaField.DisplayText(Index) = s
 'This must be called to save the user's changes.
 moMetaField.Save
 End If
End Sub

CH A P T ER 184
Transactions
In The Raiser’s Edge object model, there are a number of collections that support the use of transactions. Also, any
object that implements IBBDataObject supports transactions. With transactions, you can add or remove any
number of items from a collection or make changes to the fields in a data object temporarily until you decide to
permanently make those changes. At any point in a transaction, you can select to undo the changes you made.
Three methods and one property work together to provide the transactions functionality.
The BeginCollectionTransaction (or BeginFieldsTransaction for data objects) method signals the collection or
object you want to begin a transaction at this point. If later you select to undo the changes, the collection or object
returns to exactly the same state it is in at this time.
Calling the CommitCollectionTransaction (or CommitFieldsTransaction for data objects) method tells the
collection or object you are finished with this transaction, and you want to make any changes made to the
collection or object since the BeginCollectionTransaction became permanent. However, this does not make any
changes to the database itself; those changes can be made only by calling the parent record’s Save method.
To return the collection or the object to the state it was in when you started the transaction, call the
RollbackCollectionTransaction (or RollbackFieldsTransaction for data objects) method. After calling this method,
the collection or object is exactly as it was when the transaction began.

Private Sub Form_Unload(Cancel As Integer)

 'Clean up!
 Set moMetaField = Nothing
 set moDataObject = Nothing
 moAction.CloseDown
 Set moAction = Nothing
End Sub

ES S EN T I A LS 85
When using collections, you can use the InTransaction property to check to see if the collection is in the middle of
a transaction. This is important because if you call CommitCollectionTransaction or
RollbackCollectionTransaction when there is no active transaction, an error is raised. The following code sample is
an example of how these can be used.

Custom View: Creating Custom Parts
With Custom View for The Raiser’s Edge, you can create a customised view of individual and organisation
constituent records. This makes it possible to view records showing only the information you want to see. By
creating these customised screens, you can select and view only what is important and functional for your
organisation. Every field available on a constituent record may not be useful to you. Using Custom View, you can
easily select and organise only the fields and items you want to appear for a constituent record.
Saving custom view parts is a key element in using Custom View. When you create custom views, you can
incorporate saved parts from existing custom views. Using this “building block” method helps you make your
custom views more consistent and eliminates duplication of effort from creating the same part over and over again
on different views.

Custom Parts
VBA enables you to go a step further. In addition to creating saved parts, you can use VBA to create custom parts
for your custom views. Custom parts are similar to saved parts, yet give you unlimited flexibility to create and
customise parts of custom screens to fit the particular needs of your organisation. While saved parts can
incorporate any of the functionality included in Custom View, your custom parts can include any feature you wish
to create. Once you create a custom part, you can make it available for all your users to include in custom views
they create.

Dim oRecord As CRecord
 Set oRecord = New CRecord

 oRecord.Init REApplication.SessionContext
 oRecord.LoadByField uf_Record_CONSTITUENT_ID, 3

 Dim oIndividuals As CIndividuals
 Set oIndividuals = oRecord.Relations.Individuals

 oIndividuals.BeginCollectionTransaction
 oIndividuals.Remove oIndividuals.Item(1), False

 'If we just removed the last Individual relation then Rollback.
 If oIndividuals.Count = 0 Then
 oIndividuals.RollbackCollectionTransaction
 Else
 oIndividuals.CommitCollectionTransaction
 End If

 'Any changes to the collection are not saved to the database until now.
 oRecord.Save
 Set oIndividuals = Nothing

 oRecord.CloseDown
 Set oRecord = Nothing

CH A P T ER 186
Standard custom views are read-only. However, you can use VBA to create custom parts that enable your users to
edit constituent information when viewing constituent records in custom view mode.

Adding a Custom Part
To create custom parts in VBA, you must perform several steps. You must create a system macro that creates an
instance of the custom part class you will create. Then you must create the class for your custom part. After you
perform these two steps, you can click the Custom View link in Configuration to use the custom part when you
create a custom view.
To use the sample below, it is very important that you first set a reference to the Microsoft HTML Object Library.
From VBA, select Tools, References, and mark the Microsoft HTML Object Library checkbox. Click OK.
Then, add a system_macro with IBBCustomView in the signature to call the class you will create for your custom
part. In this example, our class will be named “CHelloWorldPart”.

Now create the class module for the custom view. To add the class, in the Project - System box, right-click
System and select Insert, Class Module. Paste in the sample code below and name the class module
CHelloWorldPart.cls. This sample demonstrates a custom part that will display the message “Hello World” a text
link over a background colour you specify. When a user clicks the text link, the custom part calculates the total
amount of cash gifts donated by a constituent.
You must place your implementation (both design-time and runtime) in the class instantiated in the system macro
you created. The design-time implementation can contain information to help custom view users when they use the
custom part while creating a custom view. For example, you may want to explain that the calculation of cash gifts
can be performed only at runtime. The runtime implementation contains the actual functionality of the custom part
when the end user views a constituent record in a custom view that incorporates it.

' This public sub is required in for the custom view designer to discover that

' we have a custom part available.

' 1. Any custom view must have a corresponding sub with the same signature as this
sample.

' 2. You must set oView to a new instance of the class you created that implements

' the IBBCustomView interface.

Public Sub VBACustomView(ByRef oView As IBBCustomView)

 Set oView = New CHelloWorldPart

End Sub

ES S EN T I A LS 87
Because Custom View uses HTML as its rendering engine, it is helpful to be familiar with HTML Styles, Dynamic
HTML, and Cascading Style Sheets. Knowledge of XML can also be very helpful in creating custom parts.

Option Explicit

Implements IBBCustomView
Implements IBBCustomViewDesign
Implements IBBCustomViewEvents

Private moHost As IBBCustomViewHost
Private moRec As CRecord
Private WithEvents moDIV As HTMLDivElement ' Withevents so we can catch user
 ' events on our custom part such as
 ' "click"

Private WithEvents moCashLink As HTMLSpanElement

' This method is called when an end user opens a constituent record
' and selects this custom view
Private Sub IBBCustomView_Init(ByVal oHTMLContainerElement As MSHTML.IHTMLElement, _
ByVal oHost As BBREAPI7.IBBCustomViewHost, ByVal sParameterString As String)

 ' Cache references to key objects
 Set moHost = oHost
 ' This is the data object representing the current constituent record
 Set moRec = moHost.CurrentDataObject

 ' Custom View uses HTML as its rendering engine, so we need to be familiar
 ' with dynamic HTML/CSS/Styles. This line gives us programmatic access
 ' to the DIV element that is encapsulating our custom part

 ' Note: Remember to set a reference to the HTML Object Library so we will have
 ' early-bound access to HTML elements
 Set moDIV = oHTMLContainerElement

 ' Example: using a style property to change the background colour of our part
 moDIV.Style.backgroundColour = "aqua"

 ' Call the routine that will handle rendering our custom part's content
 renderCustomPart

End Sub

Private Sub IBBCustomView_CloseDown()

 ' Called when end user closes the constituent record,
 ' good time to do clean-up
 Set moDIV = Nothing
 Set moRec = Nothing
 Set moHost = Nothing

End Sub

CH A P T ER 188
' This method is invoked only when the end user is interacting with the
' custom view in design-mode (that is, from Configuration)
Private Sub IBBCustomViewDesign_CloseDown()

 ' Called when end user closes the custom view designer

End Sub

Private Property Get IBBCustomViewDesign_Description() As String
 ' Optionally return a verbose description
 IBBCustomViewDesign_Description = "This description provides additional info"

End Property

Private Property Get IBBCustomViewDesign_HasParameters() As Boolean
 ' Not implemented in The Raiser's Edge 7.5; reserved for future use
End Property

Private Sub IBBCustomViewDesign_Init(ByVal oSC As BBREAPI7.IBBSessionContext)
 ' This method is invoked when a user opens a custom view in which our custom
 ' part is sited in design mode.
End Sub

Private Property Get IBBCustomViewDesign_Name() As String

 ' This is the actual description of the custom view that displays
 ' for our node in the treeview under the custom parts category in the
 ' Additional
 ' Objects box in the Custom View Designer
 IBBCustomViewDesign_Name = "Hello World Custom View Sample"

End Property

Private Sub IBBCustomViewDesign_RenderDesignTimeContent(ByVal oHTMLContainerElement As _
MSHTML.IHTMLElement, ByVal sParameterString As String)

 ' This method is used to display information about our custom part in the designer.
 ' Typically, this will just be some informative text. For example, you can explain that
 ' in
 ' in design mode, the part cannot process information and that this can be done in
 ' runtime
 ' Note the use of dynamic HTML styles.
 oHTMLContainerElement.innerHTML = "<SPAN style='font-size:20pt;_
colour:purple'>Hello world - I am in design mode"

End Sub

ES S EN T I A LS 89
Private Function IBBCustomViewDesign_ShowParameterForm(sParameterString As String) _
As Boolean
 ' When a user clicks the "parameter" glyph in the designer, this method is invoked.
 ' Typically, you would show some sort of front-end form to get criteria from the user.
 ' Then, you store the criteria as a string (hint: use XML). The custom view engine will
 ' store this string for you and make it available at runtime (when an end user opens an
 ' actual constituent record). At that point, you would interrogate the string and apply
 ' criteria appropriately.
End Function

Private Sub IBBCustomViewEvents_AfterSave()
 ' This is equivalent to the VBA AfterSave Data Object event
 MsgBox "User just saved record"
End Sub

Private Sub IBBCustomViewEvents_BeforeSave(bcancel As Boolean)
 ' This is equivalent to the VBA BeforeSave data object event
 MsgBox "User about to save record"
End Sub

Private Function IBBCustomViewEvents_onHTMLEvent(ByVal oHTMLEvent As MSHTML.IHTMLEventObj)_
As Boolean
 ' This is a general purpose routine that can be used as a catch-all for all HTML events
 ' that are fired on your custom part. Ideally, you should use direct "WithEvents"
 ' references to
 ' HTML elements in your custom part (see declaration of moDIV variable at the top
 ' of this class), but this can be used as well.
End Function

Private Sub IBBCustomViewEvents_QueryCloseDown(bcancel As Boolean)

 ' If bCancel is set to true, then closing of the form by the end user is
 ' overridden (typically due to some business rule violation)

End Sub

Private Sub IBBCustomViewEvents_QuerySwitchView(bcancel As Boolean)

 ' When multiple custom views are available, the constituent form allows the
 ' end user to cycle between them. If you set bCancel to true here, you
 ' will override the view change and the current view will remain active.
End Sub

CH A P T ER 190
Private Sub renderCustomPart()

 ' Show our initial interface, which is a link that when clicked displays
 ' the total amount of cash this constituent has donated

 ' First inject our "link." We use an HTML SPAN element and set its font to underlined
 ' blue to give the appearance of a link
 moDIV.innerHTML = "Hello world " & "<SPAN ID=cashLink style='text-decoration:_
underline;font-size:9pt;colour:blue;cursor:hand'>Click me to calculate total cash"

 ' Now hook up our EventVariable (so we can trap the click)
 Set moCashLink = moDIV.all("cashLink")

 ' At this point, we have a variable (moCashLink) ready to respond to the click event
 ' See the moCashLink_onclick() routine for the code that will be executed when our link
 ' is clicked

End Sub

ES S EN T I A LS 91
Private Function moCashLink_onclick() As Boolean

 ' The user just clicked our link, so update our custom part to display total cash
 showTotalCash

End Function

Private Sub showTotalCash()

 'For our sample we will display the total amount of cash donations given by
 ' this constituent
 Dim oGift As CGift

 Dim cTotal As Currency
 cTotal = 0

 For Each oGift In moRec.Gifts

 ' If it is a cash gift
 If oGift.Fields(GIFT_fld_Type) = "Cash" Then

 cTotal = cTotal + oGift.Fields(GIFT_fld_Amount)

 End If

 oGift.CloseDown

 Next oGift

 moDIV.innerHTML = "_
Total Cash:" & FormatCurrency(cTotal) & ""

End Sub

CH A P T ER 192
To use the new custom part, click Configuration in the Raiser’s Edge bar and click the Custom View link. In
Custom View, custom parts are available from the Fields screen, at the bottom of the Additional Objects box.
When you drag our sample into a custom view you are creating, here is what you see in design mode.

Note the descriptive text you invoked using DHTML styles. When the custom part is added to a custom view called
“test”, and that custom view is used to view a constituent record, here is how the part appears. Note the specified
aqua background and the HTML SPAN element that gives the appearance of a link.

ES S EN T I A LS 93
When you click the link, the custom part processes the constituent’s gifts and returns the total value of cash gifts.

For more information about using the Custom View Designer, see the Custom View Guide.

CH A P T ER 194

API

Contents
__

What is API? . 98
What Can I Do with API?. 98
API vs. VBA . 99
API Programming Fundamentals . 99
Using the Type Library from an API Application . 99
Accessing the References Dialog from Visual Basic 5.0 and Higher. 100
Setting a Reference to The Raiser’s Edge Type Library 100
The REAPI Object . 101

The AppMode Property. 102
The GetAvailableRegistryKeys Method . 102
The LastErrorMessage Property . 103
The QueryShutDown Method . 104
The SessionContext Property . 104
The SignOutOnTerminate Property . 104

REServices Object . 104
The CreateServiceObject Method . 105
Class Names . 105

The API In Action. 106
Accessing The Raiser’s Edge API . 106

REAPI.Init . 106
Using The Raiser’s Edge Login Form. 107
Bypassing the Login Form . 107
A Custom Login Form . 108

Addressees and Salutations. 108
The Annotate Form. 110
Code Tables and the Table Lookup Form. 111

bbsoCodeTableServer . 112
bbsoTableLookupServer . 114

Listing Records. 114
Media and Notepads . 115
Printing Reports . 116
Using The Raiser’s Edge Search Screen . 118
Gift Batch . 119

Create a New Batch . 120
Add Gifts to a Batch . 121
Commit a Batch. 122

Plug-Ins . 122
Creating a Plug-In. 123
The IBBPlugIn Interface. 123
The User Interface (UI) . 126

CH A P T ER 296
Deploying Your Plug-In. 127
Installing the Plug-In . 128

The Raiser’s Edge Object MetaViewer . 128
API Code Samples . 129
Plug-In Code Samples . 130

API 97
This guide introduces API for Advanced Application Development. This optional module enables the experienced
developer to leverage the power of The Raiser’s Edge programmatically from third party or custom applications.
This section builds upon many concepts introduced in the Essentials chapter, so you should be familiar with the
material discussed in that guide before you begin.

The programming examples and related code provided to you via this guide are the property of Blackbaud, Inc.,
and you may not copy, distribute, convey, license, sublicense, or transfer any rights therein. All examples are
subject to applicable copyright laws.

What is API?
This section provides a general, high-level overview of API.

API vs. VBA
This section explains how API differs from VBA support. It is important to understand which of these
customisation methodologies is appropriate for your task.

API Programming Fundamentals
This section introduces the mechanics involved in getting your API-based application up and running in a Visual
Basic environment.

The API In Action
This section uses step-by-step examples to illustrate common real-world API programming tasks. Each example is
broken down and discussed in detail.

Plug-Ins
Plug-Ins are a special API feature enabling custom UI extensions to the Raiser’s Edge shell. This section explains
the concept of plug-ins and how they can be built using API.
The Raiser’s Edge Object MetaviewerYou can use The Raiser’s Edge Object Metaviewer to use
MetaView to examine the type library when you select an object from the outline. This displays the object, its child
collections, and shows run-time information (such as MetaField).

API Code Samples
API code samples can be found in the RE7\Help\Samples\API directory on each workstation. Review this section
for a brief description of the available code samples.

Please remember....
We provide programming examples for illustration only, without warranty either expressed or implied,
including, but not limited to, the implied warranties of merchantability and/or fitness for a particular purpose.
This article assumes that you are familiar with Microsoft Visual Basic and the tools used to create and debug
procedures. Blackbaud Customer Support can help explain the functionality of a particular procedure, but they
will not modify, or assist you with modifying, these examples to provide additional functionality. If you are
interested in learning more about The Raiser’s Edge optional modules VBA and API, contact our Sales
department at solutions@blackbaud.co.uk.

CH A P T ER 298
Plug-In Code Samples
Plug-In code samples can be found in the RE7\Help\Samples\Plugins directory on each workstation. Review this
section for a brief description of the available code samples.

What is API?
API stands for Application Programming Interface. In short, API is a way for you to write custom applications
while taking advantage of the wealth of code contained within The Raiser’s Edge.

API follows the guidelines of Microsoft’s Component Object Model (COM). Therefore, you may use it from any
COM-enabled programming environment, including Microsoft’s Visual Basic, Visual C++, and Visual Basic for
Applications. We wrote most of the examples included in this guide using VBA.

What Can I Do with API?
A programmer trained in Visual Basic and Object-Oriented Programming can use the API to create applications
that work with The Raiser’s Edge. API can be used to access your Raiser’s Edge data from almost any application:
• Create custom form letters within Microsoft Word that directly access the latest information from your Raiser’s

Edge database.
• Generate up-to-the-minute comparative financial information from within Microsoft Excel.
• Build custom forms that aggregate the fields you use most often.
• Exchange information between The Raiser’s Edge and legacy systems in real time.
• Access current Raiser’s Edge data directly from your own Web site.
There are many different ways that you can use API. Generally, any programs that can be used with Visual Basic
COM objects are able to access API. Besides writing stand-alone applications using Visual Basic, you can use
programs that support VBA. For example, instead of a traditional mail merge, you can access constituent
information from within Microsoft Word to generate thank-you letters.
You can also “extend” The Raiser’s Edge shell by building plug-ins or add-ins that can be made available to your
end-users while they are in The Raiser’s Edge. Plug-ins written using API can be added to Plug-Ins in
The Raiser’s Edge. For example, you can create a plug-in to run several queries, export the data to Microsoft
Excel, and produce reports (complete with charts and graphs). You can also create a plug-in that includes a data
entry form to enable end-users to add information to the database in a custom format.
API can be used to access your data through the Internet by using tools available through Microsoft Internet
Explorer. You can use the Windows Scripting Host provided with the Windows 32-bit operating systems to write
scripts (similar to batch files) that use API to access Raiser’s Edge data.

For more information...
Visit Blackbaud’s Web site at www.blackbaud.co.uk for software customisation FAQs, code samples, and other
helpful information, such as error explanations. The VBA\API Web site page is one of your primary sources of
information for customising your Raiser’s Edge software.

Definition...
API (Application Programming Interface). A developer can use API to write a specific request for a computer
operating system or a software program.

API 99
API gives you access to your data. Many of the data entry forms and search screens you see while using
The Raiser’s Edge are available through API. You have access to the database through data objects that can be
used to add and edit records. Using Visual Basic, or another program that supports access to Visual Basic COM
objects, you can write custom applications to enhance The Raiser’s Edge for your organisation.

API vs. VBA
The most important distinction between VBA and API is that VBA is available only when The Raiser’s Edge is
actually up and running.
With API, you can write fully functional “standalone” programs that have complete access to The Raiser’s Edge
data and services. The Raiser’s Edge does not have to be running. API is the appropriate solution if you want to
write your own “front-end” to the system, or create a customised system that melds The Raiser’s Edge with
another specialised functionality.
Programming with API requires you to have your own COM-enabled programming language. None of the niceties
inherent to VBA are present in API. For example, VBA includes a complete forms design package. However, this is
not the case with API. If you want to build a UI using API, you must do so on your own.
If your goal is to create an entire Raiser’s Edge application or utility, API provides you with the perfect blend of
structure and flexibility to accomplish this task. You can also use API to gain access from other VBA-enabled
applications. For example, you can build a custom batch entry form in Microsoft Excel that adds records to
The Raiser’s Edge. In this example, a Microsoft Excel VBA macro uses API to add records to The Raiser’s Edge.

API Programming Fundamentals
This section introduces the steps involved in using API from a Visual Basic application.

Using the Type Library from an API Application
If you have the optional module API for The Raiser’s Edge, you need to set a reference to the type library from any
Visual Basic project for which you want to gain early-bound access to Raiser’s Edge objects.

CH A P T ER 2100
Accessing the References Dialog from Visual Basic 5.0 and
Higher
To set a reference to the library from Visual Basic 5.0 or higher, create a new Visual Basic project and select
Project, References from the menu bar.

Setting a Reference to The Raiser’s Edge Type Library
After you select References, the References screen appears. In the Available References box, you can see various
type library references already set. The most important of these for our purposes is Blackbaud Raisers Edge 7
Objects. This is the reference you must set to gain early-bound access to Raiser’s Edge objects.

API 101
The REAPI Object
The REAPI object (for more information, see the Programmer’s Reference in the help file) represents the overall
program. It provides access to a valid SessionContext needed to initialise any Raiser’s Edge object. It is important
you maintain a reference to the API object throughout the lifetime of your program; once this object is released,
your connection to the Raiser’s Edge is closed.
Use the following syntax to create an API object reference from Visual Basic:

To use this API object, you must initialise it. The API object has an Init function for this purpose:
REAPI.Init (sSerialNumber As String, [sUserName As String], [sPwd As String], [DatabaseNumber As
Long], [sThirdPartyVendor As String], [lAppMode As AppMode = amStandalone]) As Boolean
This function returns a Boolean indicating the result of the connection attempt.

'Create a new REAPI object and set a modular reference to it
Set moREAPI = New REAPI

Part Description

sSerialNumber Required. You do not have to enter a serial number, but the parameter is required. You
can find your serial number by selecting Help, About the Raiser's Edge from the
menu bar. Use double quotes “ ”.

sUserName Optional. A string expression containing a valid user name for the Raiser’s Edge
database for which you are attempting to connect. If the User name and Password
fields are blank, the login form appears when the Init method runs.

sPwd Optional. A string expression containing a valid password for the user name specified
above. If both User name and Password are supplied, the login form does not display.

DatabaseNumber Optional. A long expression representing the position of the desired database within the
login list. Note the standard sample database is always represented by 50. The first live
database is usually represented by 1. If the optional parameter is not defined, the
database appears to the user, enabling them to select the desired database.

sThirdPartyVendor Optional. Reserved for third party vendors.

lAppMode Optional. A long expression indicating whether this application is operating standalone
or as a server. If omitted, Raiser’s Edge assumes this is a standalone application.

sSerialNumber Required. You do not have to enter a serial number, but the parameter is required. You
can find your serial number by selecting Help, About the Raiser's Edge from the
menu bar. Use double quotes “ ”.

CH A P T ER 2102
Code Sample
To connect to the sample database as “Supervisor” using the default password of “Admin ”, use the following
code:

The AppMode Property
AppMode is a read-only property you can use to determine whether the application is running standalone or as part
of a server (for example, on a Web server).

The GetAvailableRegistryKeys Method
This method returns an array containing the registry key root for each installed Raiser’s Edge database.

If you have multiple Raiser’s Edge databases installed with API support, you can use this method to present the
end-user with a list of available databases.

'Initialise the REAPI object and attempt to connect to the RE7 sample database
If Not moREAPI.Init("WRE11111", "Supervisor", "Admin", 10) Then

 MsgBox "Cannot connect to database", vbOKOnly Or vbInformation

 Exit Sub
End If

'Are we running standalone?
If moREAPI.AppMode = amStandalone Then

 'Do standalone code
Else

 'Do server code
End If

'Check the registry root of the first installed Raiser's Edge database
Debug.Print moREAPI.GetAvailableRegistryKeys(1)

Please remember...
The API object does not need to be initialised to access this method.

API 103
For example, the following code populates a combo box with a list of available Raiser’s Edge databases:

Three useful keys are:

The LastErrorMessage Property
LastErrorMessage is a read-only property you can use to display the reason for an Init method failure.

Private Sub UserForm_Initialize()

 Dim lCntr As Long

 Dim vDatabases As Variant

 'Create an instance of The Raiser's Edge 7 API
 Set moREAPI = New REAPI

 'Get a list of available RE7 databases
 vDatabases = moREAPI.GetAvailableRegistryKeys

 'Load a combo with the available choices
 With cboDatabases

 .Clear

 For lCntr = 1 To UBound(vDatabases)
 .AddItem vDatabases(lCntr)

 Next lCntr

 End With

End Sub

Please remember....
Once you have access to the Registry Key, you can extract descriptive information from the registry. to display
for your end-user. The registry key will be returned as \Software\Blackbaud\REINI_## where ## is the Database
ID number.

Key Sample

<key>\GENERAL\DB_DESCRIPTION The Raiser’s Edge sample database

<key>\GENERAL\DSN RE7_SAMPLE

<key>\GENERAL\SYSTEMPATH C:\Program Files\RE7

'Initialise the REAPI object and attempt to connect to the RE7 sample database
If Not moREAPI.Init("WRE11111", "Supervisor", "Admin", 10) Then

 MsgBox "Cannot connect to database for the following reason: " _

 moREAPI.LastErrorMessage, vbOKOnly Or vbInformation

 Exit Sub

End If

CH A P T ER 2104
The QueryShutDown Method
Place this method in the QueryUnload event of your main form to make sure all non-modal Raiser’s Edge forms
unload. QueryShutDown returns False if one or more of the non-modal forms cannot unload.

The SessionContext Property
The SessionContext holds information regarding the state of the active instance of the Raiser’s Edge application. It
is needed to initialise all other objects in the system.

The SessionContext is the most popular method used in The Raiser’s Edge, although it is not used during the
initial log in. Each time a top-level object is created, it must be initialised with a valid SessionContext.

The SignOutOnTerminate Property
If set to True (-1), this property forces your instance of The Raiser’s Edge to log off when the REAPI object is
released.

REServices Object
The REServices object wraps up a number of common forms, objects, and collections and provides you with access
to them through the CreateServiceObjects method. The objects available are enumerated in bbServiceObjects (for
more information, see the Programmer’s Reference in the help file).

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

 'Make sure all non-modal RE forms are closed
 If Not moREAPI.QueryShutDown Then

 Cancel = True

 End If
End Sub

'Create a new Gift object and initialise it with our current SessionContext
Set oGift = New CGift

oGift.Init moREAPI.SessionContext

'This will cause the application to "sign out" of The Raiser's Edge
moREAPI.SignOutOnTerminate = True
Set moREAPI = Nothing

API 105
The CreateServiceObject Method
REServices exposes a number of commonly used forms, objects, and collections through the CreateServiceObject
method. This example uses CreateServiceObject() to create an instance of the IBBReportInstances collection
object, providing you with access to all the constituent profiles that have been created.

Refer to bbServiceObjects (for more information, see the Programmer’s Reference in the help file) for a list of
Service Objects that can be created.

Class Names
Three methods are provided as part of the REServices object to return the full class name of the creatable objects
that are part of the API. The full class name uses the syntax appname.objecttype (for example,
ConstitData7.CRecord). The three methods include:
• GetProgIDForDataObject() accepts a member of the bbDataObjConstants (for more information, see the

Programmer’s Reference in the help file) enum as a parameter and returns the full class name for a data object.
• GetProgIDForUIObject() accepts a member of the bbDataObjConstants (for more information, see the

Programmer’s Reference in the help file) enum as a parameter and returns the full class name for a user
interface object.

• GetProgIDForMetaProvider() accepts a member of the bbMetaObjects (for more information, see the
Programmer’s Reference in the help file) enum as a parameter and returns the full class name for a meta
object.

Creating Objects by Application Name and Class ID
With the class name, you can use the CreateObject() method that is part of Visual Basic to create an instance of the
class.

'Create a reference to an IBBReportInstances collection
 Dim oReports As IBBReportInstances

 'Create an instance of the IBBReportInstances collection
 Set oReports = REServices.CreateServiceObject(bbsoReportInstances)

 'Initialise the collection with the SessionContext and the
 ' report type for Constituent Profiles
 oReports.Init goSessionContext, ReR_Constituent

 Dim oRecord As Object

 Dim sClassName As String

 'Get the class name for the Constituent data object
 sClassName = REServices.GetProgIDForDataObject(bbdataConstituent)

 'Create the data object by the Class Name
 Set oRecord = CreateObject(sClassName)

CH A P T ER 2106
The API In Action
In other sections, you learned about API and how to start using it. This section uses examples to demonstrate
various API programming scenarios. After reviewing these code samples, you should be ready to build your own
custom applications using API.
We have created sample Visual Basic programs for each of the following examples. In many cases, the sample
code contains additional information and examples that may be helpful. All these samples can be found in
RE7\Help\Samples directory on each workstation.

Accessing The Raiser’s Edge API
This example takes you through the first step in using API and connecting to The Raiser’s Edge through the
REAPI Object. The sample program demonstrates three different approaches, each with its own advantages and
disadvantages.
You first need to create a global object reference to an REAPI object in the declaration section of your project. You
want the reference to be global since it creates and initialises only once when you start your program. Use the
object in various places throughout your program to manipulate other Raiser’s Edge objects, then destroy the
object when your program terminates.

REAPI.Init
The REAPI.Init() method is called just after startup. It requires you to provide up to four pieces of information to
establish a connection to the database, depending on the method you use. The information you need includes:
Database Serial Number. This is a unique number assigned to your database. If you have multiple databases

installed, each database has its own serial number. For example, if you install the Sample Database, it is
assigned WRE11111.

User Name. User names are set up under the Security link in Admin.
Password. When a user is created, he is assigned a password.
Database Number. If you have multiple databases installed, each has a number assigned to it. For example, if

you install the Sample Database, it is assigned the number 50.
You must always supply the database serial number. The other three parameters are optional when calling the
REAPI.Init() method.

 'Place this in the declarations section of your program
 Public goREAPI as REAPI

 'Place this in the startup section of your program
 Set goREAPI = New REAPI

'This will force an 'Exit and Sign Out' when your goREAPI object is destroyed

 goREAPI.SignOutOnTerminate = True

 'Place this in the close down section of your program
 Set goREAPI = Nothing

API 107
Using The Raiser’s Edge Login Form
This is the easiest method you can use to connect to The Raiser’s Edge.

In this case, you specify only the database serial number. Because you did not specify a database number, the
initialisation code determines if you have multiple databases installed. If that is the case, the following screen
appears so end-users can select the database they want to enter.

After selecting a database, or if you have only one database installed, the program prompts for a user name and
password. If you specify a user name in addition to the database serial number, the user name defaults to the User
Name field on the login screen.

If you specify both user name and password, the login screen does not appear.

Bypassing the Login Form
If you have all the required information, you can connect directly to a Raiser’s Edge database and bypass the login
forms. In this case, assuming all information is valid, you connect directly to the database specified and are not
prompted.

 bLoginOK = goREAPI.Init(SERIAL_NUMBER)

bLoginOK = goREAPI.Init(SERIAL_NUMBER, "Supervisor", "Admin", 10)

CH A P T ER 2108
This method is not ideal because it makes the user password accessible to any end-user with access to your
program code. However, it may be useful in cases where you need an application to connect to the database
without end-user input. For example, you may want an application to extract information from the database during
off-hours and you need this application to be launched by the last person out each night. Using this method, you
can permit anyone to run the application with Supervisor rights without distributing your password.

A Custom Login Form
This option is essentially the same as Option 2, but you create a UI for your end-users to select a database and
provide a user name and password.

The REAPI object provides the method, .GetAvailableRegistryKeys(), which returns a list of Registry Keys
associated with each Raiser’s Edge database installed. With this information, you can extract additional
information from the registry, such as the database description, the DSN, and the System Directory (the location of
The Raiser’s Edge program files).

Addressees and Salutations
The bbosoAddrSalProvider Service Object provides you with access to the list of addressees and salutations in
your program. Through this object, you can build salutations based on a constituent’s record, or by selecting a
specific salutation ID and applying that salutation format.

bLoginOK = goREAPI.Init(SERIAL_NUMBER, sUserName, sPassword, lDatabaseNumber)

'Place this in the declarations section of your program
 Public goREAPI As REAPI

 Public goREServices As REServices

'Place this in the startup section of your program
 Set goREAPI = New REAPI

 Set goREServices = New goREServices

 goREServices.Init goREAPI.SessionContext

'Place this in the close down section of your program
 goREServices.CloseDown
 Set goREServices = Nothing

 Set goREAPI = Nothing

API 109
Methods are provided to load one or all of the addressees and salutations for a constituent. LoadAddrSalCombo()
loads the Addressee/Salutations into a combo box (cboAddrSals). The GetPrimaryAddrSal() function returns the
Primary Addressee for the record passed in. Both of these sample routines require an initialised instance of a
CRecord object.

'Populates a combobox with the formatted Addressee/Salutations for a
' selected constituent
Private Sub LoadAddrSalCombo(oRecord as CRecord)

 Dim oAddrSal As IBBAddrSalProvider

 Set oAddrSal = goREServices.CreateServiceObject(bbsoAddrSalProvider)

 With oAddrSal

 .Init goREAPI.SessionContext

 .LoadComboWithAddrSals cboAddrSals, oRecord, False
 .CloseDown

 End With

 oAddrSal.CloseDown

 Set oAddrSal = Nothing

End Sub

'Returns the formatted Primary Addressee for a selected constituent
Private Function GetPrimaryAddrSal(oRecord as CRecord) As String

 Dim oAddrSal As IBBAddrSalProvider
 Set oAddrSal = goREServices.CreateServiceObject(bbsoAddrSalProvider)

 With oAddrSal
 .Init goREAPI.SessionContext

 'To build the Addr/Sal from the record, set lAddrSalToUse (3rd parameter)
 ' and lAddrSalToOtherwise (4th parameter) to either
 ' -1 for the Primary Addressee
 ' -2 for the Primary Salutation
 ' -3 for the Key Name
 GetPrimaryAddrSal = .BuildAddrSal(oRecord, BN_USEADDRSALFROMRECORD, _

 -1, 0, 0, 0)

 .CloseDown
 End With

 oAddrSal.CloseDown

 Set oAddrSal = Nothing

End Function

CH A P T ER 2110
The Annotation Form
The Annotation Service Object requires a parent record that has been initialised and loaded. When the form
displays, a reference to the parent object is passed in. The ShowAnnotationForm() routine displays the Annotation
form so you can add, edit or delete the annotation from a constituent’s record.

To display the Annotate form, create and load a CRecord object and pass it to ShowAnnotationForm():

'Place this in the declarations section of your program
 Public goREAPI As REAPI
 Public goREServices As REServices

'Place this in the startup section of your program
 Set goREAPI = New REAPI

 Set goREServices = New goREServices
 goREServices.Init goREAPI.SessionContext

'Place this in the close down section of your program
 goREServices.CloseDown

 Set goREServices = Nothing

 Set goREAPI = Nothing

Private Sub ShowAnnotationForm(oRecord As CRecord)

 Dim oAnnotationFrm As CAnnotationForm

 Set oAnnotationFrm = goREServices.CreateServiceObject(bbsoAnnotationForm)

 'Load the annotation form with the selected data object
 With oAnnotationFrm

 .Init goREAPI.SessionContext

 .ShowAnnotationForm oRecord, Me
 .CloseDown

 End With

 Set oAnnotationFrm = Nothing

 'Save the data object with the new annotation
 With oRecord

 .Save

 .CloseDown
 End With

End Sub

API 111
Code Tables and the Table Lookup Form
Code tables provide advantages such as standardising end-user input and increases data entry speed. Two Service
Objects enable you to access and manipulate code tables to gain these advantages in your application.
bbsoTableLookupServer provides access to code tables (for more information, see the Programmer’s Reference
in the help file) through the standard code table lookup form. From this form, end-users can add, edit, delete, or
select code table entries. bbsoCodeTableServer gives you access to the code table entries for a specific code table
and also provides access to static code tables (for more information, see the Programmer’s Reference in the help
file). You can also load table entries directly into combo boxes, or you can retrieve a variant array containing the
table entry descriptions and their numeric IDs.

'Place this in the declarations section of your program
 Public goREAPI As REAPI

 Public goREServices As REServices

'Place this in the startup section of your program
 Set goREAPI = New REAPI

 Set goREServices = New goREServices

 goREServices.Init goREAPI.SessionContext

'Place this in the close down section of your program
 goREServices.CloseDown

 Set goREServices = Nothing

 Set goREAPI = Nothing

CH A P T ER 2112
bbsoCodeTableServer
LoadCodeTableCombo() loads a combo called cboCodeTable with the Address Types table entries.
LoadCodeTableArray() returns a two dimensional variant array. The first dimension has a lower bound of 0 and an
upper bound of 1. The second dimension has a lower bound of 1 and an upper bound equal to the number of table
entries.

Private Sub LoadCodeTableCombo()

 Dim oCodeTableServer As CCodeTablesServer

 Set oCodeTableServer = goREServices.CreateServiceObject(bbsoCodeTablesServer)

 cboCodeTable.Clear

 'This will load a combobox with Address Types
 With oCodeTableServer

 .Init goREAPI.SessionContext
 .LoadCombo cboCodeTable, tbnumAddressTypes, False

 .CloseDown

 End With

 Set oCodeTableServer = Nothing

End Sub

API 113
Private Function LoadCodeTableArray() As Varaint

 Dim oCodeTableServer As CCodeTablesServer

 Set oCodeTableServer = goREServices.CreateServiceObject(bbsoCodeTablesServer)

 'This will load an Array with Address Type descriptions and their ID
 With oCodeTableServer

 .Init goREAPI.SessionContext

 '.CodeTableGetDataArray: Returns a two dimensional variant array containing
 ' the ID in vAry(0, n) and the description in vAry(1, n)

 Dim vAry As Variant
 Dim l As Long

 vAry = .CodeTableGetDataArray(tbnumAddressTypes)

 oCodeTableServer.CloseDown

 End With

 Set oCodeTableServer = Nothing

 LoadAddressTypeCodeTableArray = vAry

End Function

CH A P T ER 2114
bbsoTableLookupServer
ShowCodeTableForm() displays the standard table entry form and places the return value into the label lblLookup.

Listing Records
To create any Raiser’s Edge object, you need a valid SessionContext (for more information, see the
Programmer’s Reference in the help file). The SessionContext object contains all the end-user’s connection
information and can be accessed from the REAPI property, SessionContext. These code samples assumes the
global variable goREAPI has been declared and initialised.

Private Sub ShowCodeTableForm()

 Dim oTableLookupHandler As CTableLookupHandler

 Set oTableLookupHandler = REServices.CreateServiceObject(bbsoTableLookupServer)

 With oTableLookupHandler

 .Init REAPI.SessionContext
 .ShowForm tbnumAddressTypes, oFormToCenterOn:=Me

 If .Canceled Then
 lblLookup.Caption = ""

 Else

 lblLookup.Caption = "TableEntries.ID: " & .SelectedItem
 End If

 .CloseDown
 End With

 Set oTableLookupHandler = Nothing

End Sub

API 115
This code sample moves through the CRecords collection and adds constituent names to a List box. The second
code sample below demonstrates how to move through collections of top level objects.

Media and Notepads
Media and Notepad records can be edited through the Media and Notepads Service Objects. Both have similar
properties, methods, and require a parent record that has been initialised and loaded. Before the form displays, a
reference on the form is set to the parent’s Media or Notepad collection. The ShowMedia() routine displays the
media form so you can add, edit, or delete media objects from a constituent’s media collection.

'Create a reference to a CRecord and a CRecords object
 Dim oRecord As CRecord

 Dim oRecords As CRecords

'Create an instance of the CRecords object
' Using the SessionContext from the REAPI,
' Set the lFilter, so we only pull back constituents,
' Set the bReadOnly parameter so we don't lock up the records
 Set oRecords = New CRecords

 oRecords.Init goREAPI.SessionContext, lFilter:=tvf_record_Constituents, _

 bReadOnly:=True

'Loop through the oRecords collection and pull out the names
 For Each oRecord In oRecords

 With lstRecords

 .AddItem oRecord.Fields(RECORDS_fld_FULL_NAME)
 End With

 'Only pull the first 10 records for this demonstration

 If lstRecords.ListCount > 10 Then Exit For
 Next

'Clean up the object references
 oRecord.CloseDown

 Set oRecord = Nothing

 oRecords.CloseDown

 Set oRecords = Nothing

'Place this in the declarations section of your program
 Public goREAPI As REAPI

 Public goREServices As REServices

'Place this in the startup section of your program
 Set goREAPI = New REAPI

 Set goREServices = New goREServices

 goREServices.Init goREAPI.SessionContext

CH A P T ER 2116
To display the Media form, create and load a CRecord object and pass it to ShowMediaForm(). The end-user can
then modify the media objects from the constituent’s Media collection.

Printing Reports
This example uses the REServices (for more information, see the Programmer’s Reference in the help file)
object. REServices permit access to standard Raiser’s Edge forms, search screen, data objects, and reports (which
this example uses). To create an instance of the REServices object, use the following syntax.

'Place this in the close down section of your program
 goREServices.CloseDown

 Set goREServices = Nothing

 Set goREAPI = Nothing

Private Sub ShowMediaForm(oRecord As CRecord)

 'Create an instance of the CMediaForm object and create
 ' the service object bbsoMediaForm
 Dim oMediaFrm As CMediaForm
 Set oMediaFrm = goREServices.CreateServiceObject(bbsoMediaForm)

 'Load the Media form with the selected data object
 With oMediaFrm

 .Init goREAPI.SessionContext

 'Set a reference in oMediaFrm to the collection of media
 ' objects on the parent
 Set .MediaObjects = oRecord.Media

 .ShowForm Me

 .CloseDown
 End With

 Set oMediaFrm = Nothing

 'Save the data object with the new media
 With oRecord
 .Save

 .CloseDown

 End With

End Sub

'Place this in the declarations section of your program
 Public goREServices As REServices

API 117
Once the goREServices object is properly initialised, you can use the CreateServiceObject method to create an
instance of the IBBReportInstances object. IBBReportInstances is a collection of IBBReportInstance objects. For
more information on the CreateServiceObject method and the IBBReportInstances object, see the Programmer’s
Reference in the help file.
This sample code previews the constituent profiles created by the end-user “Supervisor”.

'Place this in the startup section of your program
 Set goREServices = New goREServices

 goREServices.Init REAPI.SessionContext

'Place this in the close down section of your program
 goREServices.CloseDown

 Set goREServices = Nothing

'Create a reference to a IBBReportInstance object
 and a IBBReportInstances collection

 Dim oReport As IBBReportInstance

 Dim oReports As IBBReportInstances

'Create an instance of the IBBReportInstances collection
 Set oReports = REServices.CreateServiceObject(bbsoReportInstances)

 'Initialise the collection with the SessionContext and the report
 type for Constituent Profiles
 oReports.Init REAPI.SessionContext, ReR_Constituent

 'Cycle through each report and preview them
 For Each oReport In oReports

 With oReport

 .Init REAPI.SessionContext

 'Process only the Profiles generated by the Supervisor
 If .Property(ReR_Property_CreatedByName) = "Supervisor" Then
 .Process ReR_ProcessOption_Preview

 End If

 End With

 oReport.CloseDown
 Set oReport = Nothing

 Next

 'Clean up the object references
 Set oReports = Nothing

CH A P T ER 2118
Using The Raiser’s Edge Search Screen
This example makes use of the REServices (for more information, see the Programmer’s Reference in the help
file) object. REServices permits access to standard Raiser’s Edge forms, reports, data objects, and the search
screen (which this example uses). To create an instance of the REServices object, use the following syntax.

Once the goREServices object is properly initialised, you can use the CreateServiceObject method to create an
instance of the IBBSearchSCreen object. For more informationa bout the Create ServiceObject method and the
IBBSearchScreen object, see the Programmer’s Reference in the help file.

'Place this in the declarations section of your program
 Public goREServices As REServices

'Place this in the startup section of your program
 Set goREServices = New goREServices
 goREServices.Init REAPI.SessionContext

'Place this in the close down section of your program
 goREServices.CloseDown

 Set goREServices = Nothing

API 119
This code displays an Open screen for constituent records and then loads the selected constituent’s name into a list
box.

Gift Batch
A wrapper class exists for you to access the API. The wrapper, CBatchAPI, along with a limited number of other
classes, exposes the Batch DLLs that provide a way for you to programmatically drive gift batch. To drive gift
batch through The Raiser’s Edge API, use the following code samples.

'Create an instance of an IBBSearchScreen object and create
 the service object bbsoSearchScreen

 Dim oSearch As IBBSearchScreen
 Set oSearch = REServices.CreateServiceObject(bbsoSearchScreen)

'Create a CRecord object to hold the returned constituent
 Dim oRecord As CRecord

 With oSearch

 .Init REAPI.SessionContext

 .AddSearchType SEARCH_CONSTITUENT 'Look only for constituents

 .ShowSearchForm

 If .SelectedID > 0 Then

 Set oRecord = .SelectedDataObject

 lstRecords.AddItem oRecord.Fields(RECORDS_fld_FULL_NAME)

 oRecord.CloseDown

 Set oRecord = Nothing

 End If
 End With

'Clean up the object references
 oSearch.CloseDown

 Set oSearch = Nothing

CH A P T ER 2120
Create a New Batch

Private Sub CreateBatch()

 Dim oBatchAPI As CBatchAPI
 Dim oBatchFields As CBatchFields

 Set oBatchAPI = New CBatchAPI
 With oBatchAPI

 .Init REAPI.SessionContext

 'Add batch fields

 Set oBatchFields = .BatchFields

 With oBatchFields
 SetupBatchField .Add(), GIFT_fld_Constit_ID

 SetupBatchField .Add(), GIFT_fld_Amount

 SetupBatchField .Add(), GIFT_fld_Fund
 SetupBatchField .Add(), GIFT_fld_Date

 SetupBatchField .Add(), GIFT_fld_Post_Date

 SetupBatchField .Add(), GIFT_fld_Post_Status
 End With

 Set oBatchFields = Nothing

 .Save

 .CloseDown

 End With
 Set oBatchAPI = Nothing

End Function

Private Sub SetupBatchField(ByVal oBatchField As CBatchField, ByVal lGiftField As
EGiftFields)

 With oBatchField

 .Fields(BatchField_fld_MetaObjectId) = bbmoGIFT

 .Fields(BatchField_fld_FieldNumber) = lGiftField
 End With

End Sub

API 121
Add Gifts to a Batch

Private Sub AddGiftData(ByVal lBatchID As Long)

 Dim oBatchAPI As CBatchAPI
 Dim oTempRecords As CTempRecords

 Dim lCntr As Long

 Set oBatchAPI = New CBatchAPI
 With oBatchAPI
 .Init REAPI.SessionContext
 .Load lBatchID
 Set oTempRecords = .TempRecords

'Add gifts with differing amounts as an example
 For lCntr = 1 To 10
 AddSingleGift oTempRecords.Add(), CCur(CStr(lCntr))
 Next lCntr

 oTempRecords.Save
 Set oTempRecords = Nothing

 .CloseDown
 End With
 Set oBatchAPI = Nothing

End Sub

Private Sub AddSingleGift(ByVal oTempRecord As CTempRecord, ByVal curAmount As Currency)

 Dim oGift As CGift
 Set oGift = New CGift
 With oGift
 .Init REAPI.SessionContext

 If moRecordFinder.Search("Mark Adamson") Then
 .Fields(GIFT_fld_Constit_ID) = moRecordFinder.RecordId
 End If

 .Fields(GIFT_fld_Amount) = curAmount

CH A P T ER 2122
Commit a Batch

Plug-Ins
Plug-ins are specially built applet extensions to The Raiser’s Edge. A plug-in does just that, it “plugs in” to
The Raiser’s Edge UI, opening up the door to a wide range of custom functionality. Plug-ins can be as simple as an
HTML page or a Microsoft Office document, or as complicated as a multi-level ActiveX document or interactive
spreadsheet.
With the flexibilty of plug-ins, you can add custom applications and extensions directly into The Raiser’s Edge.
Plug-ins share the database connection and runtime code resources within the program making them an excellent
choice for adding custom functionality without the overhead of having to build a full blown API application.
In order to build a plug-in, we must build a special COM dynamic link library (DLL) using API. This section
details the process.

 If UCase$(moServices.GetUserPref(USER_fld_FUNDFORMAT)) = "FUND ID" Then
 .Fields(GIFT_fld_Fund) = "GARDEN"
 Else
 .Fields(GIFT_fld_Fund) = "Botanical Garden Fund"
 End If

 Set oTempRecord.DataObject = oGift

 .CloseDown
 End With
 Set oGift = Nothing

End Sub

Private Sub AddGiftData(ByVal lBatchID As Long)

 Dim oBatchAPI As CBatchAPI

 Set oBatchAPI = New CBatchAPI

 With oBatchAPI

 .Init REAPI.SessionContext
 .Load lBatchID

 'Commit with the default posting options, but show the options form to allow changes
 .Commit Nothing, True, Nothing, True

 .CloseDown

 End With
 Set oBatchAPI = Nothing

End Sub

API 123
Creating a Plug-In
The typical plug-in consists of two parts. The first is a class module that implements the IBBPlugIn interface and
provides information about the plug-in. The second is a document that provides the UI. The choice of the type of
document depends on the application; it can be anything from a simple HTML page to a complex ActiveX
Document. The following example uses Visual Basic 6.0 to create a COM dynamic link library (DLL) called
pMyPlugIn.DLL.
Begin by creating a new Active-X DLL project and adding a Class (if a class module is loaded with the default
name Class1, you can simply rename it) and User Document module.

A single DLL can contain any number of class modules which implement the IBBPlugIn interface. This enables
you to store all your plug-ins in one place, using common forms and code again. For now, a single Class module,
cMyActiveXPlugIn.cls is the base class for the plug-in. docMyActiveXPlugIn.dob is used for the UI.
You also need to set a reference to the RE7 API Library (for more information, see “Using the Type Library from
an API Application” on page 99). If you use any other object libraries, you need to set these references, as well.

The IBBPlugIn Interface
After adding a reference to the IBBPlugIn interface in the General Declarations section of your plug-in class, you
need to fill in each of the plug-in properties and events. The properties provide information to the host, such as the
name and description of the plug-in.

The four events allow you to respond to actions by the system and the end-users.

Property Description

DocumentName Specifies the name of the document to load.

DocumentType Reserved for future use.

HeaderCaption Appears in the top frame when the plug-in loads.

HeaderImage Displays a graphic of your choice to the left of the header caption.

PluginDescription This is the text displayed in the left Description column of the Plug-Ins page.

PluginName This is the text displayed in the right Plug-In column of the Plug-Ins page.

Event Description

OnInit Occurs before all other events, when the host creates an instance of the plug-in object.

CH A P T ER 2124
The steps below take you through setting up a simple plug-in class.
1. Add the interface reference.

2. Set any initialisation information. Note that when a plug-in is first accessed, The Raiser’s Edge host needs
to perform several initialisation tasks before the plug-in can load. This requires that the OnInit and
OnCloseDown events fire. Therefore, the OnInit and OnClosedown events cannot be used to determine
whether or not the plug-in has been run. You should avoid putting code into these events, with the
exception of setting a reference to the SessionContext in OnInit, and clearing the reference in
OnCloseDOwn. OnLoad and OnQueryUnLoad do not fire during the initialisation process and can be used
for any required start-up and closedown code.

OnLoad Occurs when the plug-in document loads into the shell and before control is passed to the
end-user.

OnQueryUnload Occurs before the document unloads.

OnClosedown Occurs when the host destroys the document.

Implements IBBPlugIn

'A session context for the application is passed in when the
' plug-in is initialised (IBBPlugIN_OnInit()). This may not
' be necessary, depending on the application
Private moSessionContext As IBBSessionContext

'When the Plug-In is loaded (IBBPlugIn_OnLoad()), the main
' user interface document is passed in. This may not be
' necessary, depending on the application
Private moUserDoc As Object

Private Sub IBBPlugIn_OnInit(oREHost As BBInterfaces.IBBShellHost)

 Set moSessionContext = oREHost.SessionContext

End Sub

Private Sub IBBPlugIn_OnLoad(oDoc As Object) 'User Object

 Set moUserDoc = oDoc
End Sub

API 125
3. Specify the name of the plug-in UI document. The IBBPlugIn_DocumentName() property should return
the path to the UI file. If you are using user documents for your interface, when you create the DLL, each
user document is in the same directory as the DLL with the extension *.vbd.

4. Create a user-friendly description for your plug-in. The text displays on the Plug-Ins page in the
The Raiser’s Edge.

5. Create a caption for your plug-in and add a graphic, if necessary. This appears at the top of the Plug-Ins
page in the The Raiser’s Edge. Plug-in header images are 32 x 32 pixels and can be *.jpg, *.gif, or *.bmp
format.

'Uses App.Path to return the path of the RE7 application,
' and adds the PlugIns path and file name.
Private Property Get IBBPlugIn_DocumentName() As String

 IBBPlugIn_DocumentName = App.Path & "\PlugIns\docMyPlugIn.vbd"
End Property

Private Property Get IBBPlugIn_DocumentType() As BBREAPI7.REShellDocumentTypes

 'Specify the type of document (HTML or ACTIVEX)
 ' - this property is reserved for future use and is not currently used
 IBBPlugIn_DocumentType = redocActiveXDocument

End Property

Private Function IBBPlugIn_PluginName() As String

 IBBPlugIn_PluginName = "My Plug-In"

End Function

Private Function IBBPlugIn_PluginDescription() As String

 IBBPlugIn_PluginDescription = "Sample RE7 Plug-In"
End Function

Private Property Get IBBPlugIn_HeaderCaption() As String

 IBBPlugIn_HeaderCaption = "My Plug-in Header Caption"
End Property

Private Property Get IBBPlugIn_HeaderImage() As String
 IBBPlugIn_HeaderImage = App.Path & "\PlugIns\MyPlugIn.jpg"

End Property

CH A P T ER 2126
6. Close down the plug-in properly. The IBBPlugIn_OnQueryUnload() occurs before the plug-in or
application closes. Note that linking to a separate HTML page from the shell or switching to another shell
menu item causes this event to fire. OnQUeryUnload allows you to verify information and cancel the close
process if the end-user has not completed all necessary tasks. Setting bCancel to true cancels the unload
and returns the end-user to the plug-in form. bShellIsUnloading is true if the end-user is trying to close
The Raiser’s Edge.

The User Interface (UI)
You can specify a wide array of document types in the DocumentName() property and let The Raiser’s Edge serve
as host. For example, to host a Microsoft Excel spreadsheet you can use the following code sample.

To host a local HTML page, you would use the following code sample.

Private Sub IBBPlugIn_OnQueryUnload(bCancel As Boolean, _

 ByVal bShellIsUnloading As Boolean)

 'AllowClose is a public method on the docMyPlugIn user

 ' document. The routine validates the user input

 ' and determines if the plug-in can be closed.
 If Not moUserDoc.AllowClose Then

 MsgBox "Required field missing."

 bCancel = True
 End If

End Sub

Private Sub IBBPlugIn_OnClosedown()

 If Not moUserDoc Is Nothing Then

 Set moUserDoc = Nothing
 End If

 If Not moSessionContext Is Nothing Then
 Set moContext = Nothing

 End If

End Sub

Private Property Get IBBPlugIn_DocumentName() As String
 IBBPlugIn_DocumentName = App.Path & "\Events.xls"

End Property

Private Property Get IBBPlugIn_DocumentName() As String

 IBBPlugIn_DocumentName = App.Path & "\MyHTMLPlugIn.Html"

End Property

API 127
To host an HTML page on the Web, you would use the following code sample.

To continue the example, we create a user document to provide the UI for this plug-in.

Here, the user document does not perform any specific task. It contains one property, AllowClose(), which is used
by the OnQueryUnload() event of the cMyActiveXPlugIn.cls. Unless the checkbox is marked, the end-user cannot
close the plug-in. You can use this method to validate end-user input or make sure that all required tasks are
completed before closing the plug-in.

Deploying Your Plug-In
After you compile your plug-in, you need to copy the plug-in DLL and any relevant support files to the
RE7\Plugins directory. Once the files are in place, your end-users have access to the plug-in from the Plug-Ins link
on the Raiser’s Edge bar.

Private Property Get IBBPlugIn_DocumentName() As String

 IBBPlugIn_DocumentName = "http://www.blackbaud.co.uk"
End Property

CH A P T ER 2128
Installing the Plug-In
In Plug-Ins, select File, Install Plugin from the shell menu bar.

From here, you can select your plug-in DLL and copy the DLL file to the RE7\PlugIns directory.
Make sure all other support documents and files that are referenced by the plug-in are installed on the end-user’s
machine. This includes the user document files and the HTML files you are using for the UI.

The Raiser’s Edge Object MetaViewer
Using The Raiser’s Edge Object Metaviewer, you can use MetaView to examine the type library when you select
an object from the outline. This displays the object, its child collections, and shows run-time information (such as
MetaField).

API 129
To access the Object MetaViewer, double-click REMetaView.exe in your The Raiser’s Edge 7\Help folder on any
workstation. The list of nodes under Main Objects are The Raiser’s Edge top level objects.

API Code Samples
These samples provide you with basic and advanced concepts of connecting to The Raiser’s Edge. Each sample
contains a ReadMe.txt file explaining the steps necessary to use the API application. All API samples are located in
the RE7\Help\Samples\API directory on each workstation.

Sample Format Description

Log In Visual Basic 6.0 Demonstrates three methods for connecting to The Raiser’s
Edge database. You can connect directly without end-user
interaction, prompt the end-user for login name and password
using the standard Raiser’s Edge login screen, or use a custom
login screen.

Search screen Visual Basic 6.0 Uses the standard Raiser’s Edge search screen to look up
records.

List Records Visual Basic 6.0 Using a CRecords object, retrieves a list of Constituent records.

Addressee/
Salutation

Visual Basic 6.0 Uses the Addressee/Salutation provider to build addressees and
salutations for constituents.

Attribute Types Visual Basic 6.0 A demonstration of the AttributeTypeServer object.

CH A P T ER 2130
Plug-In Code Samples
These samples range from a simple outline of a plug-in to more complicated examples that make use of some of the
API objects. Each sample contains a ReadMe.Txt file explaining the steps necessary to use the plug-in. All Plug-in
samples are located in the RE7\Help\Samples\PlugIns directory on each workstation.

Code Table Server Visual Basic 6.0 This sample shows you how to extract code table information. In
addition, it demonstrates the TableLookupHandler object that
displays the standard code table form.

Forms Visual Basic 6.0 Uses the CreateServiceObject method of the REServices object
to display the search screen, annotation, Media, and Notepad
forms.

Misc UI Visual Basic 6.0 Displays several of the miscellaneous UI forms, including Print
Setup and the About form. Makes use of the Quick Find method
of Misc UI interface to find records (an alternative to the
standard search screen).

Prog IDs Visual Basic 6.0 Demonstrates an alternate method for creating a data object
using the GetProgIDforDataObject method of the REServices
object.

Reports Visual Basic 6.0 An example of how to automate running reports through API.

For more information...
Visit Blackbaud’s Web site at www.blackbaud.co.uk for software customisation FAQs, code samples, and other
helpful information, such as error explanations. The VBA\API Web site page is one of your primary sources of
information for customising your Raiser’s Edge software.

Sample Format Description

MyPlugIn Visual Basic 6.0 Provides a basic example of the events in user document and
HTML document based plug-ins.

TodaysGiving Visual Basic 6.0 Uses the CGifts object to provide a simple summary of giving
for the current day. Breaks down the giving into Cash, Pledge,
and Other.

Please remember....
We provide programming examples for illustration only, without warranty either expressed or implied,
including, but not limited to, the implied warranties of merchantability and/or fitness for a particular purpose.
This article assumes that you are familiar with Microsoft Visual Basic and the tools used to create and debug
procedures. Blackbaud Customer Support can help explain the functionality of a particular procedure but they
will not modify, or assist you with modifying, these examples to provided additional functionality. If you are
interested in learning more about The Raiser’s Edge optional modules VBA and API, contact our Sales
department at solutions@blackbaud.co.uk.

131IN D E X
Index
A
access The Raiser’s Edge data from Web site 98
accessing, see opening
active X

attributes grid 42
controls, defined 37
data grid 39
phones/email/links grid 45

adding
child objects 30
data objects 20
records using data object 20

addressees 108
annotation form 66, 110
API

code sample 129
defined 98
library type 10
programming 99
reference, set 11
session context 12
vs. VBA 99

application name 105
AppModeproperty 102
attribute type server 63
attributes grid, active X 42

B
bypassing the login form 107

C
child objects

adding 30
collection types 22
defined 21
deleting 30
sorting collections 31
top collection 26
top view collection 28
view collection 28

class ID 105
class names 105
closedown 13
code sample

API 129
data objects 16
explanation 4

media form 72
plug-in 130
query objects 47
report objects 55
table lookup handler 61
user interface objects 36

code tables 111
code tables server 57
collection

child object
child 22
programming 21
sorting 31
standard child 22
top 26
top view 28
view 28

data object, filtering 32
report object

categories 50
instances 53
types 52

COM automation objects 5
CreateServiceObject method 105
creating

custom letters 98
forms 98
objects by application name and class ID 105
plug-ins 123
static queries 47

custom login form 108
Custom View 85

D
data entry forms 35
data grid active X 39
data objects

adding 20
code samples 16
database ID 15
defined 6, 13
deleting 20
filtering 32
hierarch 14
integrity 20
loading 15
top level 14
updating 18
validation 20

database ID 15
deleting

child objects 30
data objects 20
records using data object 21

deploying plug-ins 127
documentation map 4

IN D E X132
E
early bound objects 7
errors 33
exchange information with The Raiser’s Edge 98

F
fields property 19
filtering

data object collections 32
forms, creating 98

G
GetAvailableRegistryKeys method 102
gift batch, using 119

H
hierarchy, data object 14

I
IBBDataObject interface 81
IBBMetaField interface 82
IBBPlugIn interface 123
init 13
initializing objects

closedown method 13
defined 13
init method 13

installing plug-ins 128
integrity, data objects 20
interfaces 5

L
LastErrorMessage property 103
letters, create 98
library type

API 10
defined 7
early bound objects 7
VBA 8

library, type
defined 99
setting reference 100

listing records 114
loading data objects 15
login form

bypassing 107
custom 108

login form, using 107

M
media 115
media form

code sample 72
defined 70

MetaViewer 128
misc UI 78
models, object 6

N
notepad form 68
notepads 115

O
objects

child
adding 30
collection types 22
defined 21
deleting 30
sorting collection 31
top collection 26
top view 28
view collection 28

collections 21
creating by application name and class ID 105
data 13

defined 6
early bound 7
filtering 32
IBBDataObject interface 81
initializing 5, 13
models 5, 6
releasing 5, 13
service 5
session context 11
user interface 5

metaviewer 128
REAPI 101
report

annotation form 66
attribute type server 63
categories collection 50
code sample 55
code tables server 57
defined 50
instances collection 53
media form 70
misc UI 78
notepad form 68

133IN D E X
property viewer 73
search screen 75
table lookup handler 60
types collection 52

REServices 104
service

defined 45
query objects 46

user interface
code sample 36
data entry forms 35
defined 34
showing standard forms 35

obsoCodeTableServer 112
obsoTableLookupServer 114
opening

query objects 46
Raiser’s Edge, The 106
reference dialog 100
standard child collection 25

P
phones/email/links grid, active X 45
plug-ins

code sample 130
creating 123
defined 122
deploying 127
IBBPlugIn interface 123
installing 128
user interface 126

printing reports 116
processing query result set 46
programming 99
programming language 4
property viewer 73

Q
query objects

code sample 47
creating static queries 47
defined 46
opening 46
processing result set 46

QueryShutDown method 104

R
Raiser’s Edge, The

access data from Web site 98
exchange information with 98
gift batch, using 119
login form, using 107

object metaviewer 128
opening 106
search screen 16
search screen, using 118

REAPI object 101
REAPI.Init 106
record

adding using data objects 20
deleting using data objects 21
listing 114

references
API 11
VBA 9

releasing objects
closedown 13
defined 13
init 13

report objects
annotation form 66
attribute type server 63
categories collection 50
code sampe 55
code tables server 57
defined 50
instance collection 53
media form 70
misc UI 78
notepad form 68
property viewer 73
search screen 75
table lookup handler 60
type collection 52

report, printing 116
REServices object 104

S
salutations 108
sample code, see code sample
search screen 75
search screen, using 118
service objects 5

defined 45
query 46

session context
API 12
defined 11
VBA 12

SessionContext property 104
SignOutOnTerminate property 104
sorting, collections 31
standard child collection

accessing 25
defined 22
navigating 23
structure 23
updating 24

IN D E X134
T
table lookup form 111
table lookup handler

code samples 61
defined 60

the 100
top level data objects 14
transactions 5
translations 84
type library 5

defined 99
setting reference 100

type, library 7

U
UI, see user interface
updating

data objects 18
standard child collection 24

user interface 126
user interface objects

code sample 36
data entry forms 35
defined 34
showing standard form 35

using documentation 4

V
validation, data objects 20
VBA 99

reference, set 9
session context 12
type library 8

	Table of Contents
	Essentials
	Using This Guide
	Documentation Map
	Programming Language
	Sample Code
	Raiser’s Edge Programming Essentials

	Objects and Object Models
	What Are Objects and Object Models?
	The Raiser’s Edge Object Model
	Data Objects

	The Raiser’s Edge Type Library
	Using Early Bound Objects and the Type Library
	Using the Type Library from VBA
	Accessing the References Dialog
	Setting a Reference to The Raiser’s Edge Type Library

	Using the Type Library from an API Application
	Accessing the References Dialog from Visual Basic 5.0 and Higher

	The Raiser’s Edge Object Fundamentals
	The SessionContext
	Accessing the SessionContext from VBA
	Accessing the Session Context from API

	Initialising and Releasing Objects
	The Init and CloseDown Methods

	Data Objects
	Data Object Hierarchy
	What Are “Top Level” Objects?
	Loading a Data Object
	How Many Ways Can I Load a Data Object?
	An Alternate Method to Load Data Objects-The Database ID
	Using The Raiser’s Edge Search Screen to Load Your Data Object

	Updating Data Objects
	The Fields Property
	Validation and Integrity

	Adding and Deleting Data Objects
	Adding a Record Using a Data Object
	Deleting a Record Using a Data Object

	Programming Child Objects and Collections
	What is a Child Object?
	Child Collection Types
	The Standard Child Collection
	The Child Top Collection
	The Child View Collection
	The Top View Collection

	Adding and Deleting Child Objects
	Adding a Child Object
	Deleting a Child Object
	Sorting Collections
	SortField
	SortOrder

	Filtering Data Object Collections
	Error Handling
	Return Code Based
	Error Code Based

	User Interface (UI) Objects
	Data Entry Forms
	Showing a Standard Form

	Raiser’s Edge ActiveX Controls
	Data Grid
	Attributes Grid
	Phones/Email/Links Grid

	Service Objects
	Query Objects
	Opening a Query
	Processing a Query Result Set
	Creating Static Queries

	Report Objects
	Reports Categories Collection
	Reports Types Collection
	Report Instances Collection
	Report Objects Sample
	Code Tables Server
	Table Lookup Handler
	Attribute Type Server
	Annotation Form
	Using the Annotation Form Object

	Notepad Form
	Using the Notepad Form Object

	Media Form
	Using the Media Form Object

	Property Viewer
	Using the Property Viewer

	Search Screen
	Using the Search Screen Object

	MiscUI
	Using the MiscUI Object

	Advanced Concepts and Interfaces
	Using the IBBDataObject Interface
	Using the IBBMetaField Interface
	Transactions

	Custom View: Creating Custom Parts
	Custom Parts
	Adding a Custom Part

	API
	What is API?
	What Can I Do with API?

	API vs. VBA
	API Programming Fundamentals
	Using the Type Library from an API Application
	Accessing the References Dialog from Visual Basic 5.0 and Higher
	Setting a Reference to The Raiser’s Edge Type Library
	The REAPI Object
	The AppMode Property
	The GetAvailableRegistryKeys Method
	The LastErrorMessage Property
	The QueryShutDown Method
	The SessionContext Property
	The SignOutOnTerminate Property

	REServices Object
	The CreateServiceObject Method
	Class Names

	The API In Action
	Accessing The Raiser’s Edge API
	REAPI.Init
	Using The Raiser’s Edge Login Form
	Bypassing the Login Form
	A Custom Login Form

	Addressees and Salutations
	The Annotation Form
	Code Tables and the Table Lookup Form
	bbsoCodeTableServer
	bbsoTableLookupServer

	Listing Records
	Media and Notepads
	Printing Reports
	Using The Raiser’s Edge Search Screen
	Gift Batch
	Create a New Batch
	Add Gifts to a Batch
	Commit a Batch

	Plug-Ins
	Creating a Plug-In
	The IBBPlugIn Interface
	The User Interface (UI)
	Deploying Your Plug-In
	Installing the Plug-In

	The Raiser’s Edge Object MetaViewer
	API Code Samples
	Plug-In Code Samples

	Index

